Data Analysis

SciPy – Scientific Computing Tools for Python

SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source software for mathematics, science, and engineering.

It also refers to the SciPy library, which is one component of the SciPy stack. This page focuses on the SciPy library.

The SciPy library is one of the core packages that make up the SciPy stack. It provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. It’s a collection of numerical algorithms and domain-specific toolboxes, including signal processing, optimization, statistics and much more.

Features include:

  • Collection of mathematical algorithms and convenience functions built on the Numpy extension of Python.
  • High-level commands and classes for manipulating and visualizing data.
  • Wide range of sub-packages:
    • cluster – clustering algorithms.
    • constraints – physical and mathematical constants.
    • fftpack – Fast Fourier Transform routines. Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal from those components.
    • integrate – integration and ordinary differential equation solvers. It provides several integration techniques including an ordinary differential equation integrator.
    • interpolate – interpolation and smoothing splines. There are several general interpolation facilities available in 1, 2 , and higher dimensions:
      • A class representing an interpolant in 1-D, offering several interpolation methods.
      • Convenience function griddata offering a simple interface to interpolation in N dimensions (N = 1, 2, 3, 4, …). Object-oriented interface for the underlying routines is also available.
      • Functions for 1- and 2-dimensional cubic-spline interpolation, based on the FORTRAN library FITPACK. There are both procedural and object-oriented interfaces for the FITPACK library.
      • Interpolation using Radial Basis Functions.
    • io – Input and Output, many modules, classes, and functions available to read data from and write data to a variety of file formats.
    • linalg – linear algebra.
    • ndimage – N-dimensional image processing.
    • odr – orthogonal distance regression.
    • optimize – optimization and root-finding routines. It provides several commonly used optimization algorithms:
      • Unconstrained and constrained minimization of multivariate scalar functions (minimize) using a variety of algorithms (e.g. BFGS, Nelder-Mead simplex, Newton Conjugate Gradient, COBYLA or SLSQP).
      • Global (brute-force) optimization routines (e.g. basinhopping, differential_evolution).
      • Least-squares minimization and curve fitting algorithms.
      • Scalar univariate functions minimizers and root finders.
      • Multivariate equation system solvers using a variety of algorithms (e.g. hybrid Powell, Levenberg-Marquardt or large-scale methods such as Newton-Krylov).
    • signal – signal processing – contains some filtering functions, a limited set of filter design tools, and a few B-spline interpolation algorithms for one- and two-dimensional data.
    • sparse – sparse matrices and associated routines with ARPACK.
    • spatial – spatial data structures and algorithms. Users can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging the Qhull library. It also contains KDTree implementations for nearest-neighbour point queries, and utilities for distance computations in various metrics.
    • special – special functions. The main feature of the scipy.special package is the definition of numerous special functions of mathematical physics.
    • stats – statistical distributions and functions – contains a large number of probability distributions as well as a growing library of statistical functions.

Support: Documentation, GitHub (scipy library), Mailing List
Developer: SciPy Developers (SciPy)
License: BSD-new license

SciPy is written in Python. Learn Python with our recommended free books and free tutorials.

Return to Essential Python Tools | Return to Python Maths Tools | Return to Python Data Analysis

Popular series
Free and Open Source SoftwareThe largest compilation of the best free and open source software in the universe. Each article is supplied with a legendary ratings chart helping you to make informed decisions.
ReviewsHundreds of in-depth reviews offering our unbiased and expert opinion on software. We offer helpful and impartial information.
Alternatives to Proprietary SoftwareReplace proprietary software with open source alternatives: Google, Microsoft, Apple, Adobe, IBM, Autodesk, Oracle, Atlassian, Corel, Cisco, Intuit, and SAS.
GamesAwesome Free Linux Games Tools showcases a series of tools that making gaming on Linux a more pleasurable experience. This is a new series.
Artificial intelligence iconMachine Learning explores practical applications of machine learning and deep learning from a Linux perspective. We've written reviews of more than 40 self-hosted apps. All are free and open source.
Guide to LinuxNew to Linux? Read our Linux for Starters series. We start right at the basics and teach you everything you need to know to get started with Linux.
Alternatives to popular CLI tools showcases essential tools that are modern replacements for core Linux utilities.
System ToolsEssential Linux system tools focuses on small, indispensable utilities, useful for system administrators as well as regular users.
ProductivityLinux utilities to maximise your productivity. Small, indispensable tools, useful for anyone running a Linux machine.
AudioSurveys popular streaming services from a Linux perspective: Amazon Music Unlimited, Myuzi, Spotify, Deezer, Tidal.
Saving Money with LinuxSaving Money with Linux looks at how you can reduce your energy bills running Linux.
Home ComputersHome computers became commonplace in the 1980s. Emulate home computers including the Commodore 64, Amiga, Atari ST, ZX81, Amstrad CPC, and ZX Spectrum.
Now and ThenNow and Then examines how promising open source software fared over the years. It can be a bumpy ride.
Linux at HomeLinux at Home looks at a range of home activities where Linux can play its part, making the most of our time at home, keeping active and engaged.
Linux CandyLinux Candy reveals the lighter side of Linux. Have some fun and escape from the daily drudgery.
DockerGetting Started with Docker helps you master Docker, a set of platform as a service products that delivers software in packages called containers.
Android AppsBest Free Android Apps. We showcase free Android apps that are definitely worth downloading. There's a strict eligibility criteria for inclusion in this series.
Programming BooksThese best free books accelerate your learning of every programming language. Learn a new language today!
Programming TutorialsThese free tutorials offer the perfect tonic to our free programming books series.
Linux Around The WorldLinux Around The World showcases usergroups that are relevant to Linux enthusiasts. Great ways to meet up with fellow enthusiasts.
Stars and StripesStars and Stripes is an occasional series looking at the impact of Linux in the USA.
Notify of

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Inline Feedbacks
View all comments