Free Programming Books

16 Excellent Free Books to Learn Lisp

Lisp (derives from “LISt Processing”) is one of the oldest programming languages. It was invented in 1958, with the language being conceived by John McCarthy and is based on his paper “Recursive Functions of Symbolic Expressions and Their Computation by Machine”. Over the years, Lisp has evolved into a family of programming languages. The most commonly used general-purpose dialects are Common Lisp and Scheme. Other dialects include Franz Lisp, Interlisp, Portable Standard Lisp, XLISP and Zetalisp.

The majority of Lisp implementations offer a lot more than just a programming language. They include an entire environment such as debuggers, inspectors, tracing, and other tools to add the Lisp developer. Lisp is a practical, expression-oriented, interactive programming language which uses linked lists as one of its major data structures. A Lisp list is written with its elements separated by whitespace, and surrounded by parentheses. Lisp source code is itself comprised of lists.

The language has many unique features that make it excellent to study programming constructs and data structures. Many regard Lisp as an extremely natural language to code complex symbolic reasoning programs. Lisp is popular in the fields of artificial intelligence and symbolic algebra.

1. Common Lisp: A Gentle Introduction to Symbolic Computation by David S. Touretzky

Common Lisp: A Gentle Introduction to Symbolic ComputationCommon Lisp: A Gentle Introduction to Symbolic Computation is about learning to program in Lisp. Although widely known as the principal language of artificial intelligence research—one of the most advanced areas of computer science—Lisp is an excellent language for beginners.

This 1990 edition may be distributed in hardcopy form, for non-profit educational purposes, provided that no fee is charged to the recipient beyond photocopying costs.

Chapters cover the following:

  • Introduction – begins with an overview of the notions of function and data, followed by examples of several built-in Lisp functions.
  • Lists – these are the central data type for Lisp.
  • EVAL notation – a more flexible notation. EVAL notation allows us to write functions that accept other functions as inputs.
  • Conditionals – study some special decision-making functions, called conditionals, that choose their result from among a set of alternatives based on the value of one or more predicate expressions.
  • Variables and Side Effects – provides readers with a better understanding of the different kinds of variables that may appear in Lisp programs, how variables are created, and how their values may change over time.
  • List Data Structures – presents more list-manipulation functions, and shows how lists are used to implement such other data structures as sets, tables, and trees.
  • Applicative Programming – based on the idea that functions are data, just like symbols and lists are data, so one should be able to pass functions as inputs to other functions, and also return functions as values.
  • Recursion – Recursive control structure is the main topic of this chapter, but we will also take a look at recursive data structures in the Advanced Topics section.
  • Input/Output – Lisp’s read-eval-print loop provides a simple kind of i/o, since it reads expressions from the keyboard and prints the results on the display.
  • Assignment – frequently used in combination with iterative control structures, which are discussed in the following chapter.
  • Iteration and Block Structure – provides powerful iteration constructs called DO and DO*, as well as simple ones called DOTIMES and DOLIST. Learn about block structure, a concept borrowed from the Algol family of languages, which includes Pascal, Modula, and Ada.
  • Structures and The Type System – explains how new structure types are defined and how structures may be created and modified. Structures are an example of a programmer-defined datatype.
  • Arrays, Hash Tables And Property Lists – briefly covers three distinct datatypes: arrays, hash tables, and property lists.
  • Macros and Compilation – use evaltrace diagrams and a little tool called PPMX (defined in the Lisp Toolkit section) to see how macros work. The chapter also looks at compilation. The compiler translates Lisp programs into machine language programs, which can result in a 10 to 100 times speedup.

At the end of each chapter there is optional advanced material to hold interest of junior and senior science majors. There are also exercises for the reader to work through.

Read the book

2. COMMON LISP: An Interactive Approach by Stuart C. Shapiro

COMMON LISP: An Interactive ApproachCOMMON LISP: An Interactive Approach is a self-paced study guide to teach readers the COMMON LISP programming language. It aims to help programmers learn this dialect by experimenting with it via an interactive computer terminal.

This book has been used as the text of the Lisp portion of data structures, programming languages, and artificial intelligence courses and as a self-study guide for students, faculty members, and others learning Lisp independently.

This book examines the following areas:

The Basics:

  • Numbers – interact with the Lisp listener and distinguishing between objects and their printed representations.
  • Lists – discusses the most important type of Lisp object, the list.
  • Arithmetic – start evaluating list objects. Evaluating list objects is the basic operation involved in writing, testing, and using Lisp.
  • Strings and Characters – along with lists, symbols are the most important kind of objects in Lisp because they are used for program variables, for function names (as was already briefly mentioned), and as data to allow Lisp programs to manipulate symbolic data as well as numeric data.
  • Symbols – another Common Lisp data type, like integers, floating-point numbers, ratios, characters, strings, and lists.
  • Packages – the symbols a programmer intends others to use can be exported from its original package (called its home package) and imported into another package.
  • Basic List Processing – discusses the use of lists as data objects—that is, list processing—what Lisp was named for.

Programming in Pure Lisp

  • Defining your Own Functions – examines the special form defun.
  • Defining Functions in Packages.
  • Saving for Another Day.
  • Predicate Functions – functions that return either True, represented by Lisp as T, or False, represented by Lisp as NIL.
  • Conditional Expressions – one of the two most powerful features of any programming language is the conditional.
  • Recursion – the use of recursive functions is called recursion.
  • Recursion on Lists, Part 1 – Analysis: start writing recursive functions that operate on lists.
  • Recursion on Lists, Part 2 – Synthesis.
  • Recursion on Trees.
  • The Evaluator – Lisp’s evaluator is the function eval, a function of one argument. It gets its single argument evaluated, and it evaluates it one more time and returns that value.
  • Functions with Arbitrary Numbers of Arguments – consider the entire structure of lists whose members are also lists and allow recursion down the first parts as well.
  • Mapping Functions.
  • The Applicator.
  • Macros – another kind of functionlike object that get their arguments unevaluated.

Programming in Imperative Lisp:

  • Assignment – the most basic imperative statement is the assignment statement, which assigns a value to a variable.
  • Scope and Extent – the scope of a variable is the spatiotemporal area of a program in which a given variable has a given name. The extent of a variable is the spatiotemporal area of a program in which a given variable has a given storage location.
  • Sequences.
  • Local Variables – introduce one or more new local, lexically scoped variables that will be used only within the body of a single function.
  • Iteration – the traditional imperative way of repeating computations, and iterative constructs have been included in Common Lisp for those programmers who prefer them.
  • Input/Output.
  • Destructive List Manipulation.
  • Property Lists – the use of property lists to store information about symbols or about the entities the symbols represent.
  • Hash Tables – a type of Common Lisp object that are used for associating arbitrary pieces of information with each of a set of Common Lisp objects.

Object-Oriented Programming:

  • Methods
  • Classes

The licensing conditions of the book are sufficiently open. Web links must point to the author’s page rather than to a separate copy of the dvi, ps, or pdf file.

Read the book

3. Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman with Julie Sussman

Structure and Interpretation of Computer ProgramsStructure and Interpretation of Computer Programs is a textbook which teaches the principles of computing programming. It is a classic text in computer science, a definite must read.

The book focuses on the main role played by different approaches to dealing with time in computational models.

The material in this book has been the basis of MIT’s entry-level computer science subject since 1980. The authors use the programming language Lisp to educate the reader.

Read the book

Next page: Page 2 – Patterns of Software: Tales from the Software Community and more books

Pages in this article:
Page 1 – Common Lisp: A Gentle Introduction to Symbolic Computation
Page 2 – Patterns of Software: Tales from the Software Community and more books
Page 3 – Casting SPELs in Lisp and more books
Page 4 – Paradigms of Artificial Intelligence Programming and more books
Page 5 – Interpreting LISP and more books
Page 6 – The Evolution of Lisp

All books in this series:

Free Programming Books
JavaGeneral-purpose, concurrent, class-based, object-oriented, high-level language
CGeneral-purpose, procedural, portable, high-level language
PythonGeneral-purpose, structured, powerful language
C++General-purpose, portable, free-form, multi-paradigm language
C#Combines the power and flexibility of C++ with the simplicity of Visual Basic
JavaScriptInterpreted, prototype-based, scripting language
PHPPHP has been at the helm of the web for many years
HTMLHyperText Markup Language
SQLAccess and manipulate data held in a relational database management system
RubyGeneral purpose, scripting, structured, flexible, fully object-oriented language
AssemblyAs close to writing machine code without writing in pure hexadecimal
SwiftPowerful and intuitive general-purpose programming language
GroovyPowerful, optionally typed and dynamic language
GoCompiled, statically typed programming language
PascalImperative and procedural language designed in the late 1960s
PerlHigh-level, general-purpose, interpreted, scripting, dynamic language
RDe facto standard among statisticians and data analysts
COBOLCommon Business-Oriented Language
ScalaModern, object-functional, multi-paradigm, Java-based language
FortranThe first high-level language, using the first compiler
ScratchVisual programming language designed for 8-16 year-old children
LuaDesigned as an embeddable scripting language
LogoDialect of Lisp that features interactivity, modularity, extensibility
RustIdeal for systems, embedded, and other performance critical code
LispUnique features - excellent to study programming constructs
AdaALGOL-like programming language, extended from Pascal and other languages
HaskellStandardized, general-purpose, polymorphically, statically typed language
SchemeA general-purpose, functional language descended from Lisp and Algol
PrologA general purpose, declarative, logic programming language
ForthImperative stack-based programming language
ClojureDialect of the Lisp programming language
JuliaHigh-level, high-performance language for technical computing
AwkVersatile language designed for pattern scanning and processing language
CoffeeScriptTranscompiles into JavaScript inspired by Ruby, Python and Haskell
BASICBeginner’s All-purpose Symbolic Instruction Code
ErlangGeneral-purpose, concurrent, declarative, functional language
VimLPowerful scripting language of the Vim editor
OCamlThe main implementation of the Caml language
ECMAScriptBest known as the language embedded in web browsers
BashShell and command language; popular both as a shell and a scripting language
LaTeXProfessional document preparation system and document markup language
TeXMarkup and programming language - create professional quality typeset text
ArduinoInexpensive, flexible, open source microcontroller platform
TypeScriptStrict syntactical superset of JavaScript adding optional static typing
ElixirRelatively new functional language running on the Erlang virtual machine
F#Uses functional, imperative, and object-oriented programming methods
TclDynamic language based on concepts of Lisp, C, and Unix shells
FactorDynamic stack-based programming language
EiffelObject-oriented language designed by Bertrand Meyer
AgdaDependently typed functional language based on intuitionistic Type Theory
IconWide variety of features for processing and presenting symbolic data
XMLRules for defining semantic tags describing structure ad meaning
ValaObject-oriented language, syntactically similar to C#
Standard MLGeneral-purpose functional language characterized as "Lisp with types"
DGeneral-purpose systems programming language with a C-like syntax
DartClient-optimized language for fast apps on multiple platforms
MarkdownPlain text formatting syntax designed to be easy-to-read and easy-to-write
KotlinMore modern version of Java
Objective-CObject-oriented language that adds Smalltalk-style messaging to C
PureScriptSmall strongly, statically typed language compiling to JavaScript
ClojureScriptCompiler for Clojure that targets JavaScript
VHDLHardware description language used in electronic design automation
Share this article

Share your Thoughts

This site uses Akismet to reduce spam. Learn how your comment data is processed.