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1. Introduction

The Haskell community has an acute shortage
of buggy underdocumented programs.

(sorear)

1.1. About the Book

1.1.1. This is a work in progress.

Warning! This book is a work in progress. Read at your own risk!

Hello there! This is a book that will show you around the Haskell programming language. If you're not
already familiar (or too familiar) with programming in another language, you might need to put in extra
work. Don't be discouraged! While the stu� in the beginning may seem extremely boring, mind-blowing
things start happening later on.

This book has a lot of footnotes. You don't have to read them, but sometimes you might gain some insight
by doing so. You can click on them (do it here1) to jump to them faster (readers from the website might
want to download the book for this reason). You can click on the table of contents as well.

Feel free to jump around the book as well! I've added as many links as possible to help you get around to
cooler stu� if you're curious about it. I also have short recaps of the important stu� as it's needed so you
don't have to go back and hunt for the particular chapter the concept got introduced in.

The writing in this book may not be polished yet, and some things may be missing, but take a look � you
might just like it!

Your turn! Exercises

At the end of each subsection I will add some exercises in the form of questions, quizzez or whatever. If
you're stuck, as the saying goes, Try HarderTM. I usually go to Google when I'm not sure of something.
Don't be afraid to �cheat� this way2 but be sure that you learn something from it!

After you're done with the exercises, read the hints at the end. They often provide additional insight beyond
answering the question. Some might explain why we do things one way and not another. Others might give
interesting or fun facts about Haskell. Or you might just have found a solution that is completely original
and creative!

1.2. Why Haskell?

1.2.1. Who might want to learn

Every language (human or computer) is unique. But there exists a special breed of languages � those that
challenge and shape the way one thinks. Haskell is one of them � lost innovation in a sea of clichés. Un-
fortunately, the only people apparently interested in Haskell are academics who blindly push the boundaries
and gurus who want to learn �just one more language�.

1If it didn't work, you might want to download the book (google docs link). If it still doesn't work, get Adobe Reader.
2It's not cheating! Googling stu� is an amazing way to get unstuck, read more about things and learn new and better ways
of solving problems. I do it all the time.
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1. Introduction

On a more concrete note, if Haskell were to have a list of prerequisites, it would be very unusual indeed �
at least two of the following:

� Extensive programming experience

� A background in mathematics

� An inclination towards the abstract

� Perseverence

� Hard work

1.2.2. For Programmers

I never intended to (and still don't quite) take programming seriously. I wanted something quick, fun and
challenging to kill some time, clear my thoughts and, above all, stop performing repetitive tasks. My �rst
language was Python � easy, fun, good with the teachers. After about two weeks, I let it go and tried
others: Common Lisp, C, Perl, Java, and �nally, I fell in love with Haskell.

One might say Haskell is a bit di�erent. For example, in Haskell:

� return doesn't return

� Classes aren't really classes

� �Variables� are actually constants.

� The code might not execute in the order shown on the screen.

Below are some of my favorite snippets of code, each on a separate line. They're classics, and really show
how Haskell stands out.

1 fibonacci = 0:1: zipWith (+) fibonacci (tail fibonacci)

2 primes = nubBy (\x y -> (gcd x y) > 1) [2..]

3 rationals = fix ((1:) . (>>= \x -> [x+1, 1%(x+1)])) :: [Rational]

4 powerset = filterM (const [True , False])

5 histogram = map (head &&& length) . group . sort

1.2.3. For Mathematicians

Every time someone writes i = i + 1, a mathematician dies3. The fact is that many mathematicians have
cringed at the sight of a computer screen with some random code. They are used to writing stu� like:

Let a function f : Z → Z, f (x) = 2y + 3, where y = |x − 4|. If we consider set A =
{−5,−3, . . . , 11}, we shall map function f over A, naming the result set B. We shall also
consider set C =

{
f2 (x) |x ∈ A, x < 10

}
.

One does not simply code such a thing in C or Python � at least not without mutilating maths. However,
in Haskell, the result is pleasing to the eye and easy to understand, too (everything following the �� is a
comment).

1 f :: Integer -> Integer

2 f x = 2*y + 3

3 where y = abs (x-4)

4
5 a = [-5,-3..11] -- we'll see later why a, b, and c are lowercase

6 b = map f a

7 c = [(f x)^2 | x <- a, x < 10] -- this really works!

The mathematical applications of Haskell are endless. It's even possible to de�ne and work with monoids
[XREF]!

3Not really, but hey.
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1. Introduction

1.2.4. For Everybody Else

Intelligent and/or hardworking people will enjoy the challenge provided by Haskell. At the end of the journey,
the traveller will look at the world with new eyes, satis�ed that he is now better equipped to understand the
Universe.

This is all because Haskell is riddled with complex, counterintuitive or simply mind-boggling elements. Let's
take a look at something interesting.

1 compare 2 3 -- works

2 compare (2 3) -- doesn 't work

3 (compare 2) 3 -- works!!

This �paradox� (let's call it Problem Z even though it's actually a feature), and more, will be presented and
explained throughout the book.

Your turn! Exercises

These aren't exercises per se, but it's good to get used to the format. Head to the end of the book if you're
really stuck and you need hints. Please don't overdo it. It's bad.

1. Why do you want to learn Haskell?

2. What other languages do you know4? Do you believe they will help or hinder your relationship with
Haskell?

3. *Third exercise. This would be a harder one as indicated by the asterisk.

4. **This is an even harder exercise.

1.3. Before We Start

This book requires a Haskell interpreter. For most people, the best option is The Haskell Platform, although
alternatives like hugs exist. The Haskell Platform uses GHCi as the interpreter (and also has a compiler,
GHC), which is what we will use in our examples.

1.3.1. Using GHCi

On Windows, GHCi can be opened using the Start Menu. On Linux, Mac and other UNIX-like systems,
ghci can be started using the shell. Below is a typical GHCi session on Linux. We type some expressions,
load a �le, add a module, and �nally change the prompt to something shorter.

We added some blank lines to make the output more readable, but in real life the following is a single block
of text. There's no need to understand it for now � the example is just to give a rough idea of the GHCi
experience.

1 ee@bt:~$ ghci

2 GHCi , version 7.4.1: http ://www.haskell.org/ghc/ :? for help

3 Loading package base ... linking ... done.

4
5 Prelude > 2 + 3

6 5

7 Prelude > max 10 2

8 10

4If this is your �rst language, just like it was when I started out, congratulations! Haskell is a really nice language and it will
grow on you. Enjoy the journey!

4
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1. Introduction

9
10 Prelude > :l test.hs -- loading a file

11 [1 of 1] Compiling Main ( test.hs, interpreted )

12 Ok, modules loaded: Main.

13
14 *Main > import Control.Monad -- importing a module

15
16 *Main Control.Monad > :set prompt "ghci > "

17
18 ghci > :q -- you can also exit with Ctrl -D

19 Leaving GHCi.

20 ee@bt:~$

1.3.2. Interactive vs. Noninteractive

GHCi is very narrowly scoped. It's more of a debugger: you can't just copy-paste source �les into it, like in
Python � there are key di�erences between interactive code and code loaded from a �le.

For example, compare the following (from now on we will use ghci> to indicate an interactive prompt �
it's set using :set prompt "ghci> ") pieces of code. Both de�ne a and b to be 5 and, respectively, a + 1.
The �rst one is coded in a �le and the second is written at the interactive prompt.

1 a = 5

2 b = a + 1

1 ghci > let a = 5

2 ghci > let b = a + 1

We will later (in [XREF]) understand why these di�erences occur. For now, remember that the second
example is working inside a Haskell program (GHCi is, after all, written in Haskell).

1.3.3. Loading Files

Many examples will use functions written in a separate �le, which is then loaded into GHCi. Let's go ahead
and open up vim (or any other text editor) and write some declarations to get the hang of it.

1 -- File: basic.hs

2 a = 2

3 b = 3

4 c = a + b

Now let's load this into GHCi and see if it works (the �le needs to be in the directory where GHCi was
started, or it won't work5). :l stands for load, and in fact you can use :load instead.

1 ghci > :l basic.hs -- this is how we load files

2 [1 of 1] Compiling Main ( basic.hs, interpreted )

3 Ok, modules loaded: Main.

4 ghci > a + 1

5 3

6 ghci > c - b == a

7 True

8 ghci > :r -- this reloads the file if we change it

5Unless you give it the full path to the �le. For instance, :l /home/ee/Code/Haskell/project/stuff.hs

5
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9 [1 of 1] Compiling Main ( basic.hs, interpreted )

10 Ok, modules loaded: Main.

11 ghci >

Again, there is no need to dissect the above pieces of code � what's important is knowing how to load a �le
(:l file.hs) and reload it (:r).

Your turn! Exercises

So now we have a basic idea of what to look for. We don't exactly know how to do a lot of stu�, so these
exercises will be simple.

1. Install a Haskell compiler/interpreter if you haven't done so already, and open the interactive prompt.

2. Open up a text editor and create starting-out.hs. Write in Haskell-speak that a equals two, b equals
three, c is a plus b, and d is the product of a, b, and c. Load the �le you have just created.

3. Is d equal to 20? Go ahead and test it out using the interactive prompt.

4. b is now 5. Change the �le to re�ect the new reality and reload it.
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I kinda expect functions to return something
sensible, but I guess I'm spoiled by exposure
to functional programming.

(kzm)

2.1. Getting Started

2.1.1. Simple Arithmetic

It is very easy to use GHCi as a calculator. It supports all the basic operations and some extra functions
(min, abs, exp etc.). As an added bonus, Haskell supports arbitrarily large integers.

1 ghci > 4 + 5*6

2 34

3 ghci > exp 2

4 7.38905609893065

5 ghci > 10 - 4 - (max 5 6)

6 0

7 ghci > 10^60

8 1000000000000000000000000000000000000000000000000000000000000

There still are some problems, especially with the - operator.

1 ghci > -3

2 -3

3 ghci > -3 + 4

4 1

5 ghci > min -3 4 -- this gives a very long error message.

GHCi treats min -3 4 as min - (3 4), and therefore thinks we want to subtract 3 4 from min. This may
look strange, even downright stupid, but GHCi has a very good reason: being able to call functions as
arguments is essential in Haskell.

We have no choice but to oblige � a solution is to wrap -3 in parentheses.

1 ghci > min (-3) 4

2 -3

2.1.2. Boolean Algebra

In Haskell, working with booleans or testing for equality is as straightforward as can be expected.

1 ghci > False || False -- right associative

2 False

3 ghci > True || False && False -- && has a higher precedence

4 True

7
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5 ghci > not True

6 False

7 ghci > not False || not True

8 True

9 ghci > 5 == 6 -- by the way , equality is not associative

10 False

11 ghci > 5 /= 7 -- programmers beware , it's not !=

12 True

A combination of right associativity and something called laziness (we'll get back to it later) means that ||
stops at the �rst True statement found (from the left). Likewise, && stops at the �rst False. Essentially,
they stop because there's no point in continuing. True || anything is True, so why bother to see what that
anything is? It doesn't matter.

Another interesting fact is that || and && are not built into the language, they're functions like all others.

2.1.3. Calling and Making Functions

Functions are called with space between the parameters. Some functions accept only one parameter, some
more1. We have already seen some functions, so here are some more examples, and then we'll move on.

1 ghci > succ 3 -- needs to have a logical successor

2 4

3 ghci > succ 'a'

4 'b'

5 ghci > pred 'Y' -- same here

6 'X'

7 ghci > pred "Hello" -- error

Before we do that, let's discuss why "Hello" doesn't have a predecessor. One might think that it's "Helln"
but that is not the case. In Haskell, as in most languages out there, "a" < "aa" < "aaa" < "ab" < "b".
You can always �nd a string that is �closer� to "hello" than the one you've just found.2

There is an important distinction to be made regarding function calls. Parentheses around the arguments
only set precedence, not separate the function from the arguments. It's essential not to get fooled, especially
in the next example.

1 ghci > foo (bar 10) -- in C this would be foo(bar (10))

2
3 ghci > (foo bar) 10

4 ghci > foo bar 10 -- this is equivalent to the above

5
6 ghci > foo bar (baz 10) 8 -- in C: foo(bar , baz (10), 8)

Also, function application has the highest precedence, so if you write foo 10 + 8, it means (foo 10) + 8

(for more details see A.1.1).

We're slightly familiar with de�ning functions, too (the 1.2.3 example). Let's play a little more with them.
Obviously, we can refer to other functions in a de�nition. Another thing to note is that functions can't begin
with uppercase letters.

1Technically all functions accept only one parameter, but it's not healthy to think like this, at least for now � remember
Problem Z (introduced in 1.2.4)?

2The same argument can be made for rational numbers, i.e. �what is the predecessor of 1.2�. Haskell has a somewhat
non-mathematical way of dealing with predecessors of non-natural numbers, because of the way they're internally de�ned.
[FIXME-ranges] [XREF]
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1 -- File: functions.hs

2 triple x = 3*x

3 strangeAddition x y = x + triple y

4 squareTwo x y = (x + y)^2

5
6 c = 4 -- this one takes zero parameters

Before we start... calling around, let's talk a little about the last line. This is a very interesting case indeed
� c is what we would call in other languages a �variable�. It's declared the same as a function, but it takes
zero parameters so it's a constant3 (that's why Haskell gives an error if you do c = 4 then c = 5 in the same
�le).

Unlike most languages, in Haskell a zero-parameter function and a constant are really the same. This,
strangely enough, has something to do with Problem Z � we'll understand what that means soon enough.

1 ghci > :l functions.hs

2 [1 of 1] Compiling Main ( functions.hs, interpreted )

3 Ok, modules loaded: Main.

4 ghci > triple 2

5 6

6 ghci > strangeAddition 10 20

7 70

8 ghci > squareTwo 5 6

9 121

10 ghci > triple c

11 12

12 ghci > strangeAddition (triple 2) c

13 18

Before we continue, let's look a bit at Haskell's if-else. The �rst thing we notice is that the else part is
mandatory. Why? Every function has to return something. Why? Haskell is more like maths � there are
no �variables� to change, so a function that doesn't return anything wouldn't work4. Does �f (x) =� make
sense?

Let's add something to functions.hs (the quote is a valid character in function names) and see what
happens. Indentation is essential in Haskell because that's how the interpreter identi�es blocks of code. This
is pretty much self-explanatory. If the statement after the if is true, then it evaluates the then part, else it
evenuates the else part.

1 -- File: functions.hs (CONTINUED)

2 strangeAddition ' x y = if x > y

3 then x + triple y

4 else y + triple x

1 ghci > :r -- we won 't be showing load/reload from now on

2 [1 of 1] Compiling Main ( functions.hs, interpreted )

3 Ok, modules loaded: Main.

4 ghci > strangeAddition 5 3

5 14

6 ghci > strangeAddition 3 5

7 18

8 ghci > strangeAddition ' 5 3

9 14

3Mathematicians will understand this right away.
4There is also a technical reason, explained in detail in [XREF]

9



2. Basics: Functions and Lists

10 ghci > strangeAddition ' 3 5

11 14

2.1.4. In�x Functions

Until now we've called functions by putting them before the arguments, like above. But if we surround
functions with backquotes, we can make them in�x (put them between the parameters), much like + or *.

Warning! Backquotes work only with two-parameter functions.

1 ghci > 3 `squareTwo ` 4

2 49

3 ghci > 10 `strangeAddition ` 20

4 70

5 ghci > 2 `triple ` -- error (and looks stupid , too)

Backquotes are usually adopted to make functions more readable, but they can also be used to create chains.
Watch out for associativity (default left) and precedence (order of operations, by default highest) � built-in
functions don't use the defaults (see A.1.1).

1 ghci > 2 `squareTwo ` 3 `squareTwo ` 4 `squareTwo ` 5

2 715716

3 ghci > ((2 `squareTwo ` 3) `squareTwo ` 4) `squareTwo ` 5

4 715716

5 ghci > 2 `squareTwo ` (3 `squareTwo ` (4 `squareTwo ` 5))

6 49815364

If a function name contains only symbols (like ++, ^, or -.-), it's automatically in�x. We can still call in�x
functions before the arguments, by putting them in parentheses. This really helps with Problem Z.

1 ghci > (+) 2 3

2 5

3 ghci > (*) 4 5

4 20

5 ghci > (/) 10 4

6 2.5

Your turn! Exercises

We're now somewhat familliar with basic math in the interpreter and we can do a handful of things with
functions. Let's consolidate this knowledge with a couple of easy questions and a few more advanced ones.

1. Fire up GHCi and try the following calculation:
1+2
4

+ 5
3+6

7
8+9

+ 1
10

. Do it in a single line (no intermediate steps).

What do you notice? How easy would it be for someone else to understand what you wrote?

2. Calculate the maximum between 2, 3, and 5. Now do it without using any parentheses (on a single
line). Can you do it using max only once?

3. Create and load a �le (use whatever name suits you) that contains: a function that calculates the
maximum between three numbers, a function that multiplies three numbers, a function that adds three
numbers, and a function that checks if three numbers are equal.

4. *Write a function that calculates the maximum between two numbers. You aren't allowed to use max.5

Do it in two di�erent ways.

5You aren't allowed to use min either, but bonus points if you thought of it!
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2.2. Using Lists

2.2.1. Intro

Lists are to Haskell like... well, there's really no comparison. They are the most used data structure. They:

� Are homogenous � mixing, for example, numbers with characters gives an error.

� Have variable length6.

� Can be in�nitely long7.

� Are singly linked � lists can only be traversed from left to right8.

We'll de�ne some lists in a �le so we can explore functions that operate on them.

1 -- File: lists.hs

2 numbers = [1, 3, 7, 5, 6, 6, 8, 10]

3 languages = ["lisp", "haskell", "c", "perl", "ruby", "python"]

4 hello = "Hello , World!" -- same as ['H', 'e', 'l', 'l', ...and so on]

5 listOfLists = [[1, 5, 7, 9], [2, 4, 6], [1]]

6 emptyList = []

For starters, ++ concatenates two lists. It's one of the most basic operators. It's associative, so (a ++ b) ++ c

is equivalent to a ++ (b ++ c)9.

1 ghci > [1, 2, 3] ++ [5, 4]

2 [1,2,3,5,4]

3 ghci > "Haskell" ++ " " ++ "is" ++ " " ++ "fun"

4 "Haskell is fun"

The simplest list operator is : � it adds an element to the front of a list10. It's so basic, in fact, that
[1, 2, 3] is just syntactic sugar11 for 1:2:3:[]. In 4.1.3 and [XREF] we'll cover the many uses of :, but
for now we'll stick to basics.

1 ghci > 5 : [4, 6, 8]

2 [5,4,6,8]

3 ghci > 5 : 4 : 6 : 8 : []

4 [5,4,6,8]

5 ghci > 'f' : "iretruck"

6 "firetruck"

7 ghci > [3, 4] : [[5, 6, 7], [8, 9]]

8 [[3,4],[5,6,7],[8,9]]

The following throw errors because we're not using : correctly. There are numerous ways to �x them,
however.

1 ghci > [1] : [2, 3] -- use 1 : [2, 3] or [1] ++ [2, 3] instead.

2 ghci > 1 : 2 : 3 -- use 1 : 2 : [3] or 1 : 2 : 3 : []

3 ghci > [10, 9, 2] : 4 -- use [10, 9, 2] ++ [4]

6Well, technically speaking they can't change (nothing can), but for all intents and purposes they are �variable� in length.
7This is because of laziness. Functions in Haskell (like those from 2.1.2) are made to use only as much information as is
necessary, and not more. If we combine with && an in�nite number of Falses, do we really need to get past the �rst one?

8This means that accessing the last element requires going through the whole list � watch out!
9Without this basic property, lists would be stupid.

10: is called a list constructor (or cons for short). It's the operator that �links� the elements of a list (we'll see how this happens
a bit later, in [XREF])

11The same thing, but prettier.
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2.2.2. Basic List Functions

Getting information from lists is done using the following built-in functions (we usually call our lists xs12):

� head � �rst element

� tail � all but the �rst

� last � last element

� init � all but the last

� !! n � the nth element (numbering starts at 0)

� take n � �rst n elements

� drop n � all but the �rst n elements

� length � self-explanatory

� null � check if the list is empty. How not to do it:

� list == [] � bad

� length list == 0 � worse

� unsafeCoerce list :: Bool � worst

1 ghci > let xs = [1, 2, 3, 4, 5, 6]

2 ghci > head xs

3 1

4 ghci > tail xs

5 [2,3,4,5,6]

6 ghci > last xs

7 6

8 ghci > init xs

9 [1,2,3,4,5]

10 ghci > xs !! 4

11 5

12 ghci > take 2 xs

13 [1,2]

14 ghci > drop 2 xs

15 [3,4,5,6]

16 ghci > length xs

17 6

18 ghci > null xs

19 False

One thing worth pointing out is that, due to the nature of lists in Haskell, accessing the last element of a list
is considerably slower than accessing the �rst one. This is because, internally, accessing an element requires
�going through�13 the ones before it. [FIXME-elaborate with examples]

Warning! Giving out-of-bounds values to head, tail, init, last, and !! throws an exception.

1 ghci > head []

2 *** Exception: Prelude.head: empty list

3 ghci > l !! 100

4 *** Exception: Prelude .(!!): index too large

5 ghci > l !! (-2)

6 *** Exception: Prelude .(!!): negative index

12As in the plural form of x � �exes�. Along the same lines: ys, zs, as, bs, cs etc.
13This is not entirely accurate, but it will do for now.
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Some more useful functions:

� maximum � the maximum of a list14

� minimum � the minimum

� sum � the sum of a list of numbers

� product � likewise, the product

� elem � checks if an element is a member of a list15 (usually called in�x because it's more readable)

� notElem � the opposite of elem (also called in�x).

1 ghci > let xs = [8, 5, 3, 4, 10, 2]

2 ghci > maximum xs

3 10

4 ghci > minimum xs

5 2

6 ghci > sum xs

7 32

8 ghci > product xs

9 9600

10 ghci > 5 `elem ` xs

11 True

12 ghci > 22 `elem ` xs

13 False

14 ghci > 22 `notElem ` xs

15 True

A special case, concat, operates on lists of lists: it �attens them. It only �removes� one layer, though.

1 ghci > concat [[2 ,3] ,[4 ,5]]

2 [2,3,4,5]

3 ghci > concat [[5]]

4 [5]

5 ghci > concat [[[5]]]

6 [[5]]

There are some functions that operate on lists of Bools:

� and � returns True if all the elements are True, False otherwise.

� or � True if at least one is True, False otherwise.

1 ghci > and [True , True , False]

2 False

3 ghci > and [True , True , True]

4 True

5 ghci > or [True , False , False]

6 True

7 ghci > or [False , False , False]

8 False

And neither last nor least (see C.1 for more), reverse reverses a list. It's not very e�cient, though, so avoid
reversing long lists.

14To calculate the maximum, the elements need to have some sort of logical order. A list of numbers or a list of characters are
�ne, but a list of functions is not.

15Needs to be able to equate elements. This may seem pretty standard, but not all stu� can equal other stu� (we'll discuss this
in-depth in [XREF]).

13



2. Basics: Functions and Lists

1 ghci > reverse [1, 2, 3, 4, 5]

2 [5,4,3,2,1]

2.2.3. Ranges

Many times we need to construct lists according to certain rules. Probably the simplest way is by using
ranges. Let's see some examples and then discuss them.

1 ghci > [1, 2 .. 20]

2 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

3 ghci > [1 .. 20]

4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

5 ghci > [1, 3 .. 15]

6 [1,3,5,7,9,11,13,15]

7 ghci > [1, 7 .. 30]

8 [1,7,13,19,25]

9 ghci > [3, 2 .. -10]

10 [3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10]

The following will not work.

1 ghci > [1, 2, 4, 8 .. 128] -- nope

2 ghci > [1 .. 39, 40] -- not this , either

It's pretty obvious: these ranges generate sequences where the di�erence between consecutive terms is con-
stant (arithmetic progressions).

They always go like this: [first element, next element .. last element].

If we need to generate consecutive things, [a .. n] is shorthand for [a, a+1 .. n] which is shorter than
writing the whole list by hand.

Furthermore, only arithmetic progressions are possible using ranges. You can, however, specify any step,
including negative or noninteger16 ones.

1 ghci > [1, 2.1 .. 5]

2 [1.0 ,2.1 ,3.2 ,4.300000000000001 ,5.400000000000001]

Warning! Using nonintegers in ranges yields undesireable results due to rounding errors.

Interestingly, if the upper bound is omitted, ranges generate in�nite lists, as exempli�ed below17. If you do
this, press Ctrl-C to stop it.

1 ghci > [1..]

2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,

76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,

94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, ^CInterrupted.

How is this useful? Well, let's remember that Haskell is lazy, so unless we want something unwise, like
printing all the elements of an in�nite list (see above) we should be in the clear. We are already familiar
with take, so let's use it in conjunction with ranges.

16With decimals.
17Disclaimer: we won't actually print in�nitely many numbers.
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1 ghci > take 20 [1..]

2 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

3 ghci > take 5 [13, 26 ..]

4 [13 ,26 ,39 ,52 ,65]

5 ghci > take 11 [1, -2 ..]

6 [1,-2,-5,-8,-11,-14,-17,-20,-23,-26,-29]

We immediately notice that the computations have ended, so clearly Haskell didn't evaluate the entire in�nite
list. In fact, when we learn more about functions, we'll see exactly how laziness works18.

Also, take note: ranges aren't limited to numbers.

2.2.4. Cycling Lists

What if we want a number repeated over and over? We can do [1, 1 .. ], and that's perfectly okay. There
are three functions we have omitted from 2.2.2, and they will make it more readable. Additionally, they have
the advantage of being functions, which will help with Problem Z. Here they are:

� repeat repeats an element into an in�nite list. We'll probably want to take a �nite number of elements,
though.

� cycle repeats an entire list. Again, we'll want to take elements.

� replicate repeats an element a speci�ed number of times.

1 ghci > take 10 (repeat 5)

2 [5,5,5,5,5,5,5,5,5,5]

3 ghci > take 10 (cycle [5, 4])

4 [5,4,5,4,5,4,5,4,5,4]

5 ghci > replicate 10 4

6 [4,4,4,4,4,4,4,4,4,4]

Warning! Do not confuse repeat and cycle � they do very di�erent things.

1 ghci > take 10 (repeat [5, 4])

2 [[5,4],[5 ,4] ,[5,4],[5 ,4] ,[5 ,4],[5 ,4] ,[5 ,4],[5 ,4] ,[5 ,4],[5 ,4]]

3 ghci > take 10 (cycle [5, 4])

4 [5,4,5,4,5,4,5,4,5,4]

2.3. List Comprehensions

2.3.1. Basics

We've seen how to declare, manipulate and, to an extent, generate lists. We will now learn one of the most
powerful tools in all of Haskell, list comprehensions. Let's start with basic examples and move on from there.

1 ghci > [ x | x <- [1..20] ]

2 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

3 ghci > [ x | x <- [1..20] , even x ]

4 [2,4,6,8,10,12,14,16,18,20]

5 ghci > [ x | x <- [1..20] , x > 6 ]

6 [7,8,9,10,11,12,13,14,15,16,17,18,19,20]

18It's not unlike if-else in other languages � if the statement is true, the else branch won't evaluate and viceversa.
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7 ghci > [ x | x <- [1..20] , even x, x > 6 ]

8 [8,10,12,14,16,18,20]

9 ghci > [ x | x <- [1..20] , even x, x > 6, odd x ]

10 []

11 ghci > [ a ++ b | a <- ["Haskell ", "C "], b <- ["syntax", "types"] ]

12 ["Haskell syntax","Haskell types","C syntax","C types"]

13 ghci > [ x + 3 | x <- [1, 6 .. 30] ]

14 [4,9,14,19,24,29]

15 ghci > [ x + 3 | x <- [1, 6 .. 30], even x ]

16 [9,19,29]

17 ghci > [ a ++ " is fun!" | a <- ["Haskell", "Perl", "C", "Lisp"] ]

18 ["Haskell is fun!","Perl is fun!","C is fun!","Lisp is fun!"]

Anyone who's seen and understood mathematical set comprehensions can just skim the rest of the section.
2.3.2 is worth reading carefully, though.

List comprehensions have two components (let's take [ 2*x | x <- [1, 3, 4], odd x ] as an example):

� The left hand-side contains the expression to be evaluated (in our case, 2*x)

� The right hand-side has:

� A base list from which x is extracted: x <- [1, 3, 4]

� A list of predicates (�lters) that must be satis�ed (in this case, we have only one): odd x

In order to understand better, let's manually calculate the above comprehension, step by step.

1. Find the base list: [1, 3, 4].

2. Take the �rst element from the base list and call it x.

3. Check the truth value of the predicates (in this case, only one): odd x.

4. If all the predicates are satis�ed, evaluate the left hand-side expression for x: 2*x then add it to the
result list.

5. Do the above steps for all elements in the base list.

Voilà: the result is [2, 6]. It's important to note that internally, Haskell does things a little di�erently.
However, the result is the same so it shouldn't bother us.

2.3.2. Advanced Uses

We can also combine two, three or more base lists, more predicates etc. The order of the base lists determines
the order of the result list, as we can see from the �rst example. The predicates are calculated left-to-right
so it's recommended that more powerful �lters be put �rst.

1 ghci > [ 10*a + b | a <- [1..3] , b <- [1..3] ]

2 [11 ,12 ,13 ,21 ,22 ,23 ,31 ,32 ,33]

3 ghci > [ x * y | x <- [2, 4, 6], y <- [10, 100, 1000] ]

4 [20 ,200 ,2000 ,40 ,400 ,4000 ,60 ,600 ,6000]

5 ghci > [ x * y | x <- [1..4] , y <- [1..3] , even (x + y) ]

6 [1,3,4,3,9,8]

7 ghci > [ x + y | x <- [3..6] , y <- [2, 4, 8], x <= y ]

8 [7,11,8,12,13,14]

Because a list comprehension is an expression, we can put it in the left hand-side of another one � compre-
hensions inside comprehensions.
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1 ghci > let xss = [[1, 2, 3, 4, 5], [4, 5, 6, 7], [7, 8, 9, 10]]

2 ghci > [ [ x | x <- xs, x >= 5 ] | xs <- xss ]

3 [[5],[5,6,7],[7,8,9,10]]

Moreover, instead of specifying an upper bound in a base list, we can take a number of results afterwards.

1 ghci > take 5 [ a | a <- [1..], b <- [1..a], c <- [1..b], a^2 == b^2 + c^2 ]

2 [5,10,13,15,17]

There are a few catches, however, some very serious.

1 ghci > take 20 [ x | x <- [1..], x < 10 ]

2 [1,2,3,4,5,6,7,8,9^ CInterrupted -- this would never finish

3 ghci > take 5 [ x | x <- [1..], x < 10 ]

4 [1,2,3,4,5] -- this works fine because Haskell is lazy

Warning! Make sure Haskell can �nd at least as many items as you take.

Some problems are harder to spot without running the code. For instance, Haskell never tries x = 2 in the
following example, because it has plenty of ys to choose from.

1 ghci > take 20 [ x * y | x <- [1..], y <- [1..] ]

2 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

To repeat, Haskell tries all the values from the last base list before continuing, so avoid having more than
one unbounded base list, because it will either not give us what we want (see above) or run inde�nitely19

(see below). Actually, there is a mountain of theory on this issue, such as this paper (advanced content).

1 ghci > take 10 [ x * y | x <- [1..], y <- [1..], y <= x ]

2 [1^ CInterrupted. -- bad idea , runs indefinitely

3 ghci > take 10 [ x * y | x <- [1..], y <- [1..x] ]

4 [1,2,4,3,6,9,4,8,12,16] -- do this instead

Mastering all the subtleties of list comprehensions takes a lot of time and experience, so let's move on. We'll
learn as we go.

2.3.3. Practical Applications

On the up side, list comprehensions have many practical uses. The classical example is determining the
length of a list. We'll need to apply our knowledge of list functions here, namely sum.

1 ghci > sum [ 1 | x <- [3 .. 20] ]

2 18

It works, but we're not really using x anywhere, so it's a waste of a perfectly good variable name. The
solution is to write an underscore whenever a variable name is not needed.

1 ghci > sum [ 1 | _ <- [3 .. 20] ]

2 18

If we want to use them repeatedly, we can declare functions with list comprehensions. Some examples:

19This is called a diverging computation.
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2. Basics: Functions and Lists

1 -- File: comprefunctions.hs

2 length ' xs = sum [ 1 | _ <- xs ]

3 vowels string = [ c | c <- string , c `elem ` "aeiou" ]

4 removeVowels string = [ c | c <- string , c `notElem ` "aeiou" ]

5 allSums xs ys = [ x + y | x <- xs, y <- ys ]

1 ghci > length ' [2, 4 .. 10]

2 5

3 ghci > length ' []

4 0

5 ghci > vowels "hello world"

6 "eoo"

7 ghci > removeVowels "hello world"

8 "hll wrld"

9 ghci > allSums [1, 2, 3] [4, 5]

10 [5,6,6,7,7,8]

Functions and lists have a lot of power. We'll be using them extensively throughout this book (and even
outside it) so it's better to take our time and make sure we understand as much as we can at this point.
Things are only going to get harder as we advance.
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3. Types, Typeclasses, and Polymorphism

I should actually think before coding, but the
type system is so good :)

(Cale)

3.1. Understanding Types

3.1.1. Knowing Types

In most of the programming world, every variable has a type: an integer, a character, a boolean etc. But
more often than not, they're there for cosmetic purposes � most compilers will happily add a number to a
character. That doesn't make much sense, does it?1

Fortunately, Haskell has a strong type system. That means that however similar their internal representations
are, the compiler won't allow us to perform illogical calculations on them, such as multiplying an integer
with a boolean. This may seem restrictive (and it sometimes is), but it helps avoid certain types of errors2

(type errors).

Moreover, Haskell features static typing, which means all types are known at compile-time so if the program
has a type error, it won't even compile.

As an added bonus, Haskell has type inference, so we don't need to manually specify the type of everything
we use. Basically, the compiler can �gure out on its own that 1 is a number or "hello" is a string3.

In GHCi, we can use :t to determine the type of an expression (:: means �has the type of�).

1 ghci > :t 'a'

2 'x' :: Char

3 ghci > :t "abcd" -- same as ['a','b','c','d']

4 "xxx" :: [Char]

5 ghci > :t 'a':'b':'c':'d':[] -- same as "abcd"

6 'a':'b':'c':'d':[] :: [Char]

7
8 ghci > :t False

9 False :: Bool

10 ghci > :t "hello" == "world" -- returns False

11 "hello" == "world" :: Bool

We know that [] denotes a list, so it's easy to conclude that [Char] means a list of characters. The others
are self-explanatory. This is just a very short example � we'll be seeing more in the future.

We also immediately notice that all types begin with a capital letter. This is the reason why variable and
function names are lowercase4.

Below is a recap of the most widely used types in Haskell. We'll be running into these all the time.

1One might argue that 'z' is 'a' + 25, but Haskell won't let you do that.
2Imagine working on a long, di�cult physics problem asking for some velocity � but after hours of calculations, the result is
in kilograms. That can't be good.

3It can even deduce more complex types just as easily.
4The capitalization technique used for functions in Haskell is informally named camelCase.
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� Int is a bounded integer. On 32-bit systems it's between −231 and 231 − 1.

� Integer is an arbitrarily large integer. It's slightly less e�cient than Int.

� Float is a single-precision �oating point.

� Double is a double-precision �oating point. Due to optimizations, Double can be faster than Float.

� Bool is a boolean. It can be either True or False. 1 and 0 won't work.

� Char represents (by default) a Unicode character.

If we try to mix wrong types, Haskell throws a type error. It usually looks like this:

1 ghci > 3 + 'a'

2
3 <interactive >:1:1:

4 No instance for (Num Char)

5 arising from the literal `3'

6 Possible fix: add an instance declaration for (Num Char)

7 In the first argument of `(+)', namely `3'

8 In the expression: 3 + 'a'

9 In an equation for `it ': it = 3 + 'a'

Basically GHCi tells us that it doesn't know how to add 'a' to 3, because 'a' is not a number. An extremely
detailed dissection of type errors in GHCi is presented in B.2.1.

3.1.2. Type Declarations

In Haskell, functions have types too. We mentioned that Haskell can infer the type of an expression on its
own. However, it's possible to manually declare the type of a function. This helps us to:

� Clarify our thoughts

� Make code more readable

� Avoid mistakes

The type declarations make functions much more expressive. Although Haskell could have inferred by itself
what the types of the functions are (like in the 2.1.3 and 2.3.3 examples), we chose to give explicit type
declarations to illustrate the method.

In type declarations the parameters (and the return type) are separated by ->, regardless of how many of
them there are5.

1 -- File: functions2.hs

2 triple :: Int -> Int

3 triple x = 3 * x

4
5 strangeAddition :: Int -> Int -> Int

6 strangeAddition x y = x + triple y

7
8 squareTwo :: Double -> Double -> Double

9 squareTwo x y = (x + y)^2

10
11 vowels :: [Char] -> [Char]

12 vowels word = [ c | c <- word , c `elem ` "aeiou" ]

13
14 sumLists :: [Int] -> [Int] -> [Int]

15 sumLists xs ys = [ x + y | x <- xs, y <- ys ]

5Problem Z is at work here. We'll see why it's not something like Int, Int -> Int.
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3. Types, Typeclasses, and Polymorphism

Warning! The parameters and the return type are not di�erentiated � all are separated by ->.

In fact, type declarations give us so much information, that we can even deduce what a function does simply
from its type declaration.

Let's take f :: [Char] -> Int as our example. This function takes a list of characters (a string) and returns
an integer. We can reasonably infer that the function takes the string and performs some sort of counting
(such as �nding out the total length or counting all the spaces) or other calculation (such as a hash function).

Indeed, f is de�ned like so: f xs = [ 1 | x <- xs, x `elem` "abc" ]. The function counts all occurences
of the letters a, b, and c in a given string, so our assessment was spot-on.

Because of this tremendous advantage, we'll be giving type declarations to (almost) every function we write
from now on.

Oh, and just so we don't forget. If we have two functions with the same type declarations, we don't need to
repeat ourselves � we separate the function names with commas in their type declaration.

1 -- File: functions2.hs (CONTINUED)

2
3 sum1 , sum2 :: Int -> Int -> Int -> Int

4 sum1 x y z = x + y + z

5 sum2 x y z = x + y - z

3.2. Polymorphism

3.2.1. Type Variables

Until now, we've de�ned functions of type Int -> Int or [Char] -> Int. But what about functions like
head? If we give head a type declaration of [Int] -> Int, for example, it will work only with integers. But
head works with basically every type of element. So what is head's type?

1 ghci > :t head

2 head :: [a] -> a

In the above snippet of code, a is what we call a type variable. It's some sort of generic type. Because head
doesn't require speci�c behavior out of its parameters (unlike ==, for instance, which requires parameters
that can be equated), we can use a6 to make an extremely general function. Basically [a] -> a tells us that
it accepts a list of any type and returns an element of the same type.

This is called polymorphism: whenever we use a type variable, we indicate that the function does not expect
a speci�c behavior, so it basically works as-is for a variety of inputs.

3.2.2. Typeclasses

We've seen some of the most speci�c type signatures (like Int -> Int or Char -> Int -> Bool) and the
most general (for example, [a] -> a, [a] -> [a] -> [a]), but what if we require something in between?
For this, we need typeclasses.

Typeclasses �group� types with a common behavior. Each internal de�nition of a typeclass contains a
collection of functions that must work for all members of that typeclass. It's pretty simple really.

Typeclasses are presented in depth in B.1 (strongly recommended reading). In the following we'll try to
explain how they interact. For this, we'll consider Num and Integral. Num �contains� all types of numbers,
but Integral only integers.

6It doesn't need to have only one letter, but for conciseness, we'll use a, b, c etc.
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In addition, for something to be an Integral, it must also be a Num. We can logically conclude that Integral
is some sort of a subclass7 of Num: it is more �speci�c�. The more speci�c a typeclass, the more operations are
possible within it. For example, Num supplies, among others, +, -, * and abs. Integral o�ers, in addition,
things like div (integer division; / in other languages) and mod (modulo; % in other languages).

If we just write 20 or 30, they're any type8 of numbers. But as soon as we perform an Integral speci�c
function on them, they (and the result of the operation) can no longer be Floats or Rationals or whatever.
We'll get round to => in a few moments.

1 ghci > :t 20

2 20 :: Num a => a

3 ghci > :t 30

4 30 :: Num a => a

5 ghci > :t 20 `div ` 5

6 20 `div ` 5 :: Integral a => a

7 ghci > :t 20 `mod ` 30

8 20 `mod ` 30 :: Integral a => a

This is the gist of typeclasses and polymorphism: they group common behavior so we can make very general
functions. If we make a sort function, we can be certain that it won't only work with lists of numbers, but
also with strings or anything else that can be ordered.

At this point, it's a good idea to go through the typeclasses described in B.1. They're very useful.

3.2.3. Making Polymorphic Functions

Now let's see how we actually use typeclasses: in type declarations, mostly. Here are a few examples:

1 ghci > :t (+)

2 (+) :: Num a => a -> a -> a

3 ghci > :t (^)

4 (^) :: (Num a, Integral b) => a -> b -> a

5 ghci > :t pi

6 pi :: Floating a => a

7 ghci > :t show

8 show :: Show a => a -> String

It seems polymorphic functions really do use the => a lot. Basically, everything before the => is a class
constraint. In the �rst example, it tells the compiler (and us) that a is a member of Num9. The actual type
of the function is right after the =>.

When we read such a de�nition, we usually do it (somewhat) from right to left.

We shall use (^) :: (Num a, Integral b) => a -> b -> a as an example.

� (^) is the name of the function. In this case it's surrounded by parentheses because it consists only of
symbols.

� :: means �has type of� � now we jump to the bit after the =>.

� a -> b -> a means the function takes a parameter of a type (a), a parameter of another type (b) and
returns a parameter of the �rst type (a).

7Calling it a subclass is not technically correct, but it is intuitively true.
8We've avoided using �kind� to the point of repeating ourselves. This is not due to lack of vocabulary: in Haskell, kind means
something di�erent. Kinds are explained in [XREF] (advanced topic).

9We can also have multiple class constraints by surrounding them in parentheses and separating them with commas, like in
(^).
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� (Num a, Integral b) is the last thing we read � it tells us that a is any type of number but b is an
integer10.

Now we'll apply our newly-gained knowledge to make our functions more general. We'll recycle examples
from 2.1.3, 2.3.3, and 3.1.2.

1 -- File: polyfunctions.hs

2
3 triple :: Num a => a -> a

4 triple x = 3*x

5
6 strangeAddition :: Num a => a -> a -> a

7 strangeAddition x y = x + triple y

8
9 c :: Num a => a

10 c = 4

11
12 length ' :: Num a => [b] -> a

13 length ' xs = sum [1 | _ <- xs ]

14
15 vowels :: [Char] -> [Char]

16 vowels word = [ c | c <- word , c `elem ` "aeiou" ]

17
18 sumLists :: Num a => [a] -> [a] -> [a]

19 sumLists xs ys = [ x + y | x <- xs, y <- ys ]

A great thing about Haskell is that if our type de�nitions are wrong (i.e., they are incompatible with the
function itself), an error is thrown. Apart from the obvious advantage, this means we can �cheat� and let
Haskell infer the type for us, then copy-paste it in our �le.

1 ghci > let spaces xs = sum [ 1 | x <- xs, x == ' ' ]

2 ghci > :t spaces

3 spaces :: Num a => [Char] -> a

1 -- File: polyfunctions.hs (CONTINUED)

2
3 spaces :: Num a => [Char] -> a

4 spaces xs = sum [ 1 | x <- xs, x == ' ' ]

3.2.4. Drawbacks

We've seen how we can make our programs more readable and reliable by adding type de�nitions. The good
news is that we can't accidentally add centimeters and inches. The bad news is that we can't add an integer
and a �oating point. What�

Of course we can do stu� like 4 + 5.1, but that's di�erent. Let's see.

1 ghci > 4 + 5.1

2 9.1

3 ghci > (4 :: Int) + (5.1 :: Float)

4
5 <interactive >:1:15:

6 Couldn 't match expected type `Int ' with actual type `Float '

10It can be any one of the 7 types of integer Haskell has.
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7 In the second argument of `(+)', namely `(5.1 :: Float)'

8 In the expression: (4 :: Int) + (5.1 :: Float)

9 In an equation for `it ': it = (4 :: Int) + (5.1 :: Float)

It seems that it all blows up if we force the types. The above error tells us, quite clearly, that it expected 5.1

to be an Int rather than a Float. Haskell can't add two di�erent types11. The keen reader will remember
that we previously mentioned polymorphic constants. We can easily check if this is the case here.

1 ghci > :t 4

2 4 :: Num a => a

3 ghci > :t 5.1

4 5.1 :: Fractional a => a

5 ghci > :t (4 + 5.1)

6 (4 + 5.1) :: Fractional a => a

Aha! So 4 can take any number type (Int, Complex, Rational, Float, Double etc.), but 5.1 is a fractional
(Float, Double etc.). Naturally, adding them means that 4 can have only the types 5.1 can have, so anything
in Fractional12.

Right now, things may seem confusing (and rightfully so). The most important thing to remember here is
to make type declarations as general as possible, but not more general. In bullet points:

� Speci�c declarations limit a function to a certain type or typeclass: triple :: Int -> Int.

� General declarations make a function versatile13: triple :: Num a => a -> a.

� Too general declarations are incorrect and throw errors: triple :: a -> a.

If we're not sure of a type, we should leave it blank. The compiler always infers types better than the user14.

Some food for thought: what happens if a typeclass has the same name as a type? So, for example, we have
sillyFunction :: Derp a => a -> Derp. How do we distinguish between the �rst Derp and the second
one? Well, they're logically di�erent: one is a type, the other a typeclass. It doesn't matter if both have
the same name. Does anyone ever confuse Jack the actor with Jack the movie character15? In technical
terms, we say that they have di�erent kinds (we'll talk more about them in [XREF]). The compiler won't
ever confuse them, and as it happens, it's a pretty frequently used technique: we don't want to... �pollute
the namespace�.

3.3. Case Study: Tuples

3.3.1. Lists Recap

We mentioned lists are homogenous and have variable length (2.2.1). Before continuing, let's explore this
from a new perspective: types.

1 ghci > :t [1, 2, 3]

2 [1, 2, 3] :: Num t => [t]

3 ghci > :t [1, 2, 3, 4]

4 [1, 2, 3, 4] :: Num t => [t]

5 ghci > :t (:)

11The addition operator (+) is of the type Num a => a -> a -> a.
12Actually, it should look like (4 + 5.1) :: (Num a, Fractional a) => a, but because Fractional is �included� in Num, it's

the same thing.
13Sometimes we want to avoid that. For example, maybe we want a function that can only triple integers so we don't accidentally

rounding errors.
14Unless, of course, it's released software � type de�nitions are half the documentation.
15Or for physicists, a the length with a the acceleration.
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6 (:) :: a -> [a] -> [a]

7 ghci > :t (++)

8 (++) :: [a] -> [a] -> [a]

Even if we don't know anything about lists, from the above piece of code we can draw two very important
conclusions:

� No matter how long a list is, its type is the same. This makes them essentially �variable� in length
� we have �do-it-all� functions that can lengthen (:, ++ etc.) or shorten (take, drop etc.) any list,
regardless of length.

� Both : and ++ take identical types as parameters, so there's no way we can get away with adding a
di�erent type of element to a list.

This translates into our current knowledge of lists: variable length and homogeneity. It reinforces the idea
that we can learn a great deal simply by analyzing types.

3.3.2. Understanding Tuples

Let's say we heard of a new Haskell feature: we can put stu� in parentheses and surround them by commas
� these structures are called tuples16. Unfortunately all the documentation is lost (yeah, right). It may not
seem like a lot, but we can extract a wealth of information from the little we know.

First, let's see if we got the syntax right and try various things to see if they work.

1 ghci > (4, 5, 6)

2 (4,5,6)

3 ghci > (10, 2, 3, 3)

4 (10,2,3,3)

5 ghci > (85, "Hello")

6 (85,"Hello")

7 ghci > ('a', "Haskell", 15, "never", "easy")

8 ('a',"Haskell" ,15,"never","easy")

9 ghci > ()

10 ()

11 ghci > ('a')

12 'a'

13 ghci > (20)

14 20

Let's draw some partial conclusions about tuples:

� They can be any size.

� They are not necessarily homogenous.

� There is such a thing as an empty tuple: ().

� Single-element tuples are the same as the elements themselves17.

Let's see what types they are.

1 ghci > :t (4, 5, 6)

2 (4, 5, 6) :: (Num t1, Num t2, Num t) => (t, t1, t2)

3 ghci > :t (10, 2, 3, 3)

4 (10, 2, 3, 3) :: (Num t1, Num t3, Num t2, Num t) => (t, t1, t2, t3)

5 ghci > :t (85, "Hello")

16For the record, that's not a new feature.
17That's pretty obvious � all we did is surround them with parentheses.
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6 (85, "Hello") :: Num t => (t, [Char])

7 ghci > :t ('a', "Haskell", 15, "never", "easy")

8 ('a', "Haskell", 15, "never", "easy")

9 :: Num t => (Char , [Char], t, [Char], [Char])

10 ghci > :t ()

11 () :: ()

12 ghci > :t ('a')

13 ('a') :: Char

14 ghci > :t (20)

15 (20) :: Num a => a

So the type of the tuple contains the types of all the elements inside it. This means:

� Tuples have an essentially �xed length18.

� An empty tuple is its own type: () is of type ().

We've also inadvertently learned that type de�nitions can be split across multiple lines (as long as the next
lines are indented slightly to the right).

3.3.3. Functions on Tuples

We now make a horrible typo:

1 ghci > (,)

2
3 <interactive >:1:1:

4 No instance for (Show (a0 -> b0 -> (a0, b0)))

5 arising from a use of `print '

6 Possible fix:

7 add an instance declaration for (Show (a0 -> b0 -> (a0, b0)))

8 In a stmt of an interactive GHCi command: print it

The error says: the type of (,), which is a0 -> b0 -> (a0, b0) (a function19) is not a member of the Show
typeclass (which is no surprise seeing we can't print functions).

So what does (,) do? It's safe to say that it creates a tuple from its two parameters20. By the same logic
we have (�), (�,) etc.

1 ghci > (,) 5 6

2 (5,6)

3 ghci > (,) 123 "abc"

4 (123,"abc")

5 ghci > (,,) 'a' 16 "ddx"

6 ('a',16,"ddx")

It's more readable to just do it normally, like (5, 6). Like all pre�x functions, (,) comes in handy for
Problem Z.

Another thought experiment � let's imagine that somebody told us about two useful functions: fst and
snd, but they didn't mention what they do. As always, we want to check their types �rst.

18We can write functions to add an element to a tuple of a speci�c size (and type) but never �universal� ones that work on all
of them.

19One that takes two types and returns a tuple which contains those types.
202-tuples (those made using (,)) are usually called pairs (or sometimes doubles), 3-tuples are triple(t)s etc.
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1 ghci > :t fst

2 fst :: (a, b) -> a

3 ghci > :t snd

4 snd :: (a, b) -> b

Now it's clear. fst must take the �rst element of a pair, and snd, the second.

1 ghci > fst (5, "a")

2 5

3 ghci > snd (5, "a")

4 "a"

5 ghci > fst (1, 2, 3) -- whoops , error

Warning! fst and snd only work on pairs. There are no built-in functions for triples or larger.

3.3.4. Applications

Tuples are especially useful in conjunction with functions or list comprehensions, namely when we want to
return multiple things. We now go back to some of the 2.3.2 examples, and try to improve them.

1 ghci > [ (a, b) | a <- [1..3] , b <- [1..3] ]

2 [(1,1) ,(1,2) ,(1,3) ,(2,1) ,(2,2) ,(2,3) ,(3,1) ,(3,2) ,(3,3)]

3 ghci > [ (x, y, x + y) | x <- [1..4] , y <- [1..3] , even (x + y) ]

4 [(1,1,2) ,(1,3,4) ,(2,2,4) ,(3,1,4) ,(3,3,6) ,(4,2,6)]

5 ghci > take 5 [ (a, b, c) | a <- [1..], b <- [1..a], c <- [1..b], a^2 == b^2

+ c^2 ]

6 [(5,4,3) ,(10,8,6) ,(13,12,5) ,(15,12,9) ,(17,15,8)]

So far, so good. Tuples seem to be okay for trivial uses, but where they really work wonders is in larger,
more complex programs. A classic example is splitting a list in order to work on both parts simultaneously.
We'll look deeper into this in [XREF] and [XREF].

1 ghci > let splitHead xs = (head xs, tail xs)

2 ghci > splitHead [1, 5, 3, 2, 6]

3 (1,[5,3,2,6])

4 ghci > splitHead []

5 (*** Exception: Prelude.head: empty list

Of course, we can't perform splitHead on an empty list, because it has no head. A better, built-in function
called splitAt solves our problems gracefully.

1 ghci > :t splitAt

2 splitAt :: Int -> [a] -> ([a], [a])

It seems that splitAt also takes an Int apart from the list, and returns a pair of lists so it's logical to think
that:

1. It will split the list at any point, and

2. It won't give us unexpected errors for out-of-bounds values.

1 ghci > splitAt 5 [1..10]

2 ([1,2,3,4,5],[6,7,8,9,10])

3 ghci > splitAt 1 [2, 3, 5, 8]

4 ([2] ,[3 ,5 ,8])
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5 ghci > splitAt 0 [2, 3, 5, 8]

6 ([],[2,3,5,8])

7 ghci > splitAt (-1) [2, 3, 5, 8]

8 ([],[2,3,5,8])

9 ghci > splitAt 5 [1, 2]

10 ([1 ,2] ,[])

11 ghci > splitAt 1 []

12 ([] ,[])

That's it for now! We'll return to types later on, but our next big step is mastering functions with advanced
syntax and everything.
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Part II.

Getting the Hang of It
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4. Exploring Syntax

Uninformed people believe that syntax is the
hardest part of learning a language.

(kmc)

4.1. Pattern Matching

4.1.1. Basics

We've seen the if-else in action (2.1.3). A serious downside is that it uses so much space. What if we want
to create a mini-dictionary?1

1 -- File: useless -dict.hs

2
3 engGer :: [Char] -> [Char]

4 engGer word = if word == "one" then "eins"

5 else if word == "two" then "zwei"

6 else if word == "three" then "drei"

7 else if word == "four" then "vier"

8 else if word == "five" then "fünf"

9 else if word == "six" then "sechs"

10 else "I don 't know what " ++ word ++ " means."

That works perfectly, apart from the fact that it looks awful and contains lots of super�uous information,
such as the �rst if or the second if or the third if...

Fortunately, we can do this instead:

1 -- File: patterns.hs

2
3 engGer :: [Char] -> [Char]

4 engGer "one" = "eins"

5 engGer "two" = "zwei"

6 engGer "three" = "drei"

7 engGer "four" = "vier"

8 engGer "five" = "fünf"

9 engGer "six" = "sechs"

10 engGer word = "I don 't know what " ++ word ++ " means."

A few things to note:

� It looks much better2.

� We don't need to align the =s but it increases readability.

� We have one function body for each use case.

1Bear with us � the �rst examples are really boring.
2...but it's still ine�cient to write a dictionary like that.
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In the second example we have used something called pattern matching. Essentially, Haskell looks at each
of the patterns (from top to bottom)3, and if one works, it will evaluate the corresponding function body.
It's pretty simple if we think about it. To clarify, the syntax looks like:

1 -- Syntax: pattern matching

2 function pattern1 = result1

3 function pattern2 = result2

4 function pattern3 = result3

5 function pattern4 = result4

6 ...

If we're not careful, our pattern matching can fail. This happens mostly when we don't cover all our angles
� we forget to consider a case.

1 -- File: patterns -wrong.hs

2
3 intToString :: Int -> [Char]

4 intToString 1 = "one"

5 intToString 2 = "two"

6 intToString 3 = "three"

This example is boring, but it illustrates the issue quite well. It's obvious that all cases except 1, 2, and 3

are missing, but in real life things may not be so straightforward. GHCi throws an error when it can't �nd
a corresponding pattern to match the input.

These errors are particularly dangerous because the compiler can't �nd them right away: it has to be given an
incorrect input, and by that time it might be too late. We can use :set -fwarn-incomplete-patterns and
GHCi will warn us on non-exhaustive patterns, but this isn't 100% guaranteed � better to check personally.

1 ghci > intToString 3

2 "three"

3 ghci > intToString 20

4 *** Exception: dontbother.hs:(4,1) -(6,23): Non -exhaustive patterns in

function Main.intToString

Warning! Make sure all possible cases are covered in pattern-matching.

The obvious solution is to introduce some sort of �catch-all� pattern.

1 -- File: patterns -wrong.hs (FIXED)

2
3 intToString :: Int -> [Char]

4 intToString 1 = "one"

5 intToString 2 = "two"

6 intToString 3 = "three"

7 intToString n = "I don 't know about " ++ show n

In this case, everything is well. The program won't crash when we give an unexpected input, but it won't
do anything useful either. As we progress, we'll learn how to deal with increasingly complex scenarios.

1 ghci > intToString 20

2 "I don 't know about 20"

For the avid reader, B.2.3 shows a basic method of customizing error messages � useful when we don't really
want to ��x� them.
3If we move engGer word = ... at the top, it will always say �I don't know ...�, because word �ts anything (it's just a
variable name), and is checked �rst.
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4.1.2. Applications

We don't actually want to use pattern matching just as a glori�ed if-else. Where it really shines is in matching
patterns, not boring numbers (although it can certainly do that as well).

Earlier (3.3.3), we wanted to do fst on a triple. We can't do that, but at this point we know very well that
we can make our own function. Let's do it.

1 -- File: patterns2.hs

2 fst3 :: (a, b, c) -> a

3 fst3 (x, _, _) = x

1 ghci > fst3 ("Mike", "Adams", 23)

2 "Mike"

Now that we know it works, it's a breeze to implement the whole lot.

1 -- File: patterns2.hs (CONTINUED)

2 snd3 :: (a, b, c) -> b

3 snd3 (_, y, _) = y

4
5 trd3 :: (a, b, c) -> c

6 trd3 (_, _, z) = z

Let's say we're mathematicians with Haskell knowledge. We have a simple task ahead of us: multiplying
two 2D vectors. What does that mean? Basically we are given two pairs (a, b) and (c, d) � the result of the
multiplication is (a · c, b · d). Easy as pie4. Before learning pattern matching, we might have done something
like:

1 -- File: vectors.hs

2 mulVct :: Num a => (a, a) -> (a, a) -> (a, a)

3 mulVct a b = (fst a * fst b, snd a * snd b)

It works perfectly well (we can try it), but it's not quite what we wanted. Let's arm ourselves with patterns
and try again.

1 -- File: vectors.hs (FIXED)

2 mulVct :: Num a => (a, a) -> (a, a) -> (a, a)

3 mulVct (a, b) (c, d) = (a * c, b * d)

The end result is equivalent in both cases. The obvious di�erence is in readability. Even though the computer
doesn't care, our human readers will be thankful of our design choices.

1 ghci > mulVct (1,2) (3,4)

2 (3,8)

3 ghci > mulVct (0,1) (5,10)

4 (0,10)

A word of warning: Num a => (a, a) -> (a, a) -> (a, a) is not the most general type de�nition out
there. Because we only multiply a with c and b with d, a and c can have di�erent types from b and d.
However, in this case it doesn't make much sense � vectors should be homogenous. So, even though the
compiler doesn't care, we do. So here we go:

Warning! Use the most general type de�nition that actually makes sense.

Another thing: Even though, at �rst, they might seem like a good idea, lists aren't suitable as vectors because
they have variable length.

4Or at least we hope so.
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4.1.3. Matching with Cons

It is time to discover the full power of the cons operator (:). We've seen how [1, 2, 3] is the same as
1:2:3:[] and 1:[2, 3]. All of them are patterns that can be matched.

1 -- File: cons -patterns.hs

2 match1 :: (Num a) => [a] -> String

3 match1 [x, y, z] = "List of 3 numbers with sum " ++ show (x + y + z)

4 match1 _ = "Nope."

5
6 match2 :: (Num a) => [a] -> String

7 match2 (x:y:z:[]) = "List of 3 numbers with sum " ++ show (x + y + z)

8 match2 _ = "Nope."

9
10 match3 :: (Num a) => [a] -> String

11 match3 (x:[y, z]) = "List of 3 numbers with sum " ++ show (x + y + z)

12 match3 _ = "Nope."

We will say this only once: patterns made of multiple bits must be surrounded by parentheses. (x:y:[]) is
necessary, while ([x, y]) is not.

All three functions above do the exact same thing. Although this may be interesting, in our case, their main
disadvantage is that they match only lists of length 3. It's not particularly useful, but what it illustrates is
the equivalence of certain notations.

Before continuing, we must note that pattern matching cannot be done with arbitrary functions. For example,
trying it with ++ gives a parse error.

1 -- File: cons -patterns -wrong.hs

2 match4 :: (Num a) => [a] -> String

3 match4 ([x,y] ++ [z]) = "List of 3 numbers with sum " ++ show (x + y + z)

4 match4 _ = "Nope."

Although it certainly looks logical to us, the compiler doesn't think the same.

1 ghci > :l cons -patterns -wrong.hs

2 [1 of 1] Compiling Main ( cons -patterns -wrong.hs, interpreted )

3
4 cons -patterns -wrong.hs:3:9: Parse error in pattern: [x, y] ++ [z]

5 Failed , modules loaded: none.

The reason it works with : and not with ++ is that : creates (constructs) the list from elements, while ++

is just a function that happens to operate on lists.

We've seen how to create pattens that exactly match the input (engGer �one�). We've also learned that
we can use variables (intToString n). We know that we can combine the two (snd3 (_, y, _)). Now we
want to be able to match lists of arbitrary length5.

We can't bind all of the elements, individually, to variables because we don't know how many of them there
are. What we can do is, say, name the �rst element of the list, say, x and the rest of the elements xs.

1 -- File: cons -patterns.hs (CONTINUED)

2 describe :: (Show a) => [a] -> String

3 describe (x:xs) = "A list with the first element " ++ show x ++ " and " ++

show (length xs) ++ " other elements."

5After all, if we can't do that, lists are basically useless.
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This works because something like [1, 2, 3, 4, 5] is exactly the same as 1:[2, 3, 4, 5] so it �ts the
pattern x:xs � x is 1 and xs is [2, 3, 4, 5].

1 ghci > describe [1..5]

2 "A list with the first element 1 and 4 other elements."

3 ghci > describe "hello , world"

4 "A list with the first element 'h' and 11 other elements."

5 ghci > describe []

6 *** Exception: cons -patterns.hs:3:1 -113: Non -exhaustive patterns in

function describe

What seems to be the problem? If we look closely, [] doesn't actually �t the pattern x:xs. There is no �rst
element of [], so x can't be matched to it. Thus the whole pattern fails (half wrong is all wrong). We can
solve this right away.

1 -- File: cons -patterns.hs (CONTINUED) (FIXED)

2 describe :: (Show a) => [a] -> String

3 describe [] = "An empty list."

4 describe (x:xs) = "A list with the first element " ++ show x ++ " and " ++

show (length xs) ++ " other elements."

1 ghci > describe []

2 "An empty list."

Incidentally, the head function in Prelude is de�ned similarly. We can make our own!

1 -- File: ourhead.hs

2 head ' :: [a] -> a

3 head ' (x:_) = x

4 head ' [] = undefined

This undefined is exactly what it says on the tin: the head' of an empty list doesn't make sense, or, in
other words, it's undefined.

1 ghci > head ' [4, 4]

2 4

3 ghci > head ' []

4 *** Exception: Prelude.undefined

Just a quick reminder: if we want to have custom error messages, we can take a look at error, explained in
B.2.3.

4.1.4. �As� patterns

Observe a simple function. Its disadvantage is that we write x:xs twice. The interpreter essentially splits
the string into a head and a tail and then puts it back together again. It's ine�cient.

1 -- File: as-patterns.hs

2 f :: String -> String -- String is the same as [Char]

3 f "" = "This is an empty string."

4 f (x:xs) = "The string " ++ x:xs ++ " has the first character " ++ [x]

Notice the di�erence (below) when using �as� patterns � by writing all@(x:xs) instead of simply (x:xs)

we can reference the whole pattern by using the name all, without having to write x:xs again. This saves
us from unnecessary keystrokes and the interpreter from unnecessary operations.
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1 -- File: as-patterns.hs (FIXED)

2 f :: String -> String -- String is the same as [Char]

3 f "" = "This is an empty string."

4 f all@(x:xs) = "The string " ++ all ++ " has the first character " ++ [x]

Another example:

1 -- File: as-patterns2.hs

2 split3 :: [a] -> (a, a, [a])

3 split3 (x:y:ys) = (x, y, x:y:ys)

4 split3 _ = undefined

Last chance to learn error (B.2.3) � we won't be using undefined any longer, except in quick and dirty
examples.

1 -- File: as-patterns2.hs (FIXED)

2 split3 :: [a] -> (a, a, [a])

3 split3 list@(x:y:ys) = (x, y, list)

4 split3 _ = error "split3: list too short"

As6 we've stated above, writing stu� like name@horriblyLongPattern will bind the entire pattern to name,
so we won't have to repeat ourselves. In this case, list@(x:y:ys) spares us the need to write x:y:ys again.
We just say list.

4.1.5. Patterns in Comprehensions

Oh, just so we don't forget: we can use pattern matching in list comprehensions, too.

1 ghci > let stuff = [(4, 5), (8, 3), (2, 2), (6, 1), (3, 2)]

2 ghci > [ a * b | (a, b) <- stuff ]

3 [20,24,4,6,6]

4 ghci > [ a + b | (a, b) <- stuff , even a, odd b ]

5 [9,11,7]

6 ghci > [ [a, b] | (a, b) <- stuff ]

7 [[4 ,5] ,[8 ,3] ,[2 ,2] ,[6 ,1] ,[3 ,2]]

This time, if a pattern fails, it will just move on to the next element.

1 ghci > let newstuff = [[4,5,6], [7,8], [9 ,10 ,11]]

2 ghci > [ a + b*c | [a,b,c] <- newstuff ]

3 [34 ,119]

4 ghci > [ 2*a | [a] <- newstuff ]

5 []

If a pattern's type fails, however, the result is not as pretty.

1 ghci > [ x + y | (x, y) <- [(1, 1, 1), (2, 2, 2)] ]

2
3 <interactive >:1:11:

4 Couldn 't match expected type `(t0, t1, t2)'

5 with actual type `(t3, t4)'

6 In the pattern: (x, y)

7 In a stmt of a list comprehension: (x, y) <- [(1, 1, 1), (2, 2, 2)]

8 In the expression: [x + y | (x, y) <- [(1, 1, 1), (2, 2, 2)]]

6Haha.
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Warning! While failing patterns can be excused, using the wrong type always results in an error.

4.2. Other Constructs and Expressions

4.2.1. Guards

We were very vehement about the fact that pattern matching is not a glori�ed if-else. The following is:

1 -- File: guards.hs

2 numberSize :: (Ord a, Fractional a) => a -> String

3 numberSize x

4 | x < 0.1 = "Small"

5 | x < 1 = "Small -ish"

6 | x < 10 = "Okay"

7 | x < 100 = "Large"

8 | otherwise = "Huge!"

In the above example, we tried to estimate the size of a given number using adjectives like Small-ish and
Huge!. This is not terribly mature, but shows how these things (which, by the way, are called guards) look
like.

Guards are basically a replacement of if-else trees. They are separated by |7 and usually neatly aligned on
separate lines for readability. They consist of a boolean expression (such as x < 10), followed by =, and then
the result (�Okay�).

Just like patterns, guards are checked from top to bottom. The �rst boolean to be True has its result
evaluated (and Haskell won't continue with the other patterns). The �nal guard, otherwise8, is the same
as writing True, but it looks more similar to written English, so it's preferred.

After this huge block of text, we should refresh our eyes by looking at some code. We've implemented our
own versions of max, min, abs9, and compare in a variety of styles.

1 -- File: guards.hs (CONTINUED)

2 max2 :: Ord a => a -> a -> a

3 max2 x y

4 | x <= y = y

5 | otherwise = x

6
7 min2 :: Ord a => a -> a -> a

8 min2 x y | x <= y = x | otherwise = y

9
10 abs2 :: (Num a, Ord a) => a -> a

11 abs2 x | x < 0 = -x

12 | otherwise = x

13
14 abs2 ' :: (Num a, Ord a) => a -> a

15 abs2 ' x | x < 0 = -x

16 abs2 ' x = x

17
18 compare2 :: Ord a => a -> a -> Ordering

19 x `compare2 ` y | x == y = EQ

7These things are called pipes. We've seen them in list comprehensions but here they do entirely di�erent things.
8It's not mandatory but highly recommended. If Haskell reaches the end of the guards without meeting an otherwise, it
checks the next pattern (as in pattern matching). If no corresponding patterns are found, an error is thrown.

9A little more restrictive than the o�cial implementation (requires Ord).
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20 | x <= y = LT

21 | otherwise = GT

22
23 compare2 ' :: Ord a => a -> a -> Ordering

24 compare2 ' x y | x == y = EQ

25 | x <= y = LT

26 | otherwise = GT

All of the above are valid, but some are more readable than others. From top to bottom:

1. max2 has a pretty standard style � we've seen this one above, and it's very readable.

2. min2 is at the other end of the spectrum: putting guards in a single line is not a good idea.

3. abs2 puts the guards immediately to the right of the function and starts them on the same line. Also
OK.

4. abs2' uses a combination of guards and pattern matching. It does the same thing as abs', but
uses a totally di�erent layout. Not usually recommended, but in some cases it looks better than the
alternatives.

5. compare2 is like abs2. What's di�erent is that it's declared in�x (surrounded by backquotes) to increase
readability.

6. compare2': this is very bad. It works just �ne, but it looks horrendous. We also notice that the guards
must be indented at least one character10 (for the record, the recommended amount is four).

At the end of the day, it's not a big deal which style we choose11. It's important to be as consistent as
possible, but not if it means sacri�cing readability.

Let's try some more examples with guards. Say we want to make a �drink� calculator. It shows us how sober
somebody is, given the blood alcohol concentration12.

1 -- File: drink -calc.hs

2 drink :: (Ord a, Fractional a) => a -> String

3 drink bac -- Blood Alcohol Concentration

4 | bac < 0.03 = "You 're as sober as can be expected."

5 | bac < 0.08 = "You can drive , but it's a bad idea."

6 | bac < 0.10 = "Your reasoning is out the window."

7 | otherwise = "Stop drinking."

This is kinda lengthy, and not very useful, but we'll perfect it as we move along. For now, let's give it a try.

1 ghci > drink 0.07

2 "You can drive , but it's a bad idea."

3 ghci > drink (4/30)

4 "Stop drinking."

5 ghci > import Data.Ratio -- let 's try rationals , too

6 ghci > drink (1 % 5)

7 "Stop drinking."

One does not simply know the blood alcohol concentration � it needs to be calculated. Fortunately, there
is a simple formula, where N is the number of drinks.13

10If the | starts at the very beginning of the line, Haskell treats it as a new function de�nition.
11Except the everything-on-a-single-line method (min2) and the one randomly indented (compare2') � we run from them like

the plague.
12We've found this information on the internet, so it's not the most precise calculator out there.
13Warning! Excessive alcohol consumption can be hazardous to your health. Driving vehicles or operating heavy machinery

should not be done under the in�uence of this dangerous chemical. Drink responsibly. Drive safely. This message brought

to you by Haskellers Anonymous.
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c =

{
0.025 ·N if you're male

0.035 ·N if you're female

In Haskell speak, this is bac = n * if sex == "male" then 0.025 else 0.035. Apart from doing what
we want it to do, this is yet another reminder that we can jam the if-else anywhere.

It's better than saying bac = if sex == "male" then n*0.025 else n*0.035 because we're not repeating
ourselves, not to mention that it's clearer.

With our current knowledge of Haskell, there are two ways of doing it, neither particularly good.

1 -- File: drink -calc.hs

2 drink :: (Fractional a, Ord a) => String -> a -> String

3 drink sex n -- Blood Alcohol Concentration

4 | (n * if sex == "male" then 0.025 else 0.035) < 0.03 = "You 're as 

sober as can be expected."

5 | (n * if sex == "male" then 0.025 else 0.035) < 0.08 = "You can drive ,

 but it's a bad idea."

6 | (n * if sex == "male" then 0.025 else 0.035) < 0.10 = "Your reasoning

 is out the window."

7 | otherwise = "Stop drinking."

If we try it out, it works:

1 ghci > drink "male" 4

2 "Stop drinking."

3 ghci > drink "female" 2

4 "You can drive , but it's a bad idea."

5 ghci > drink "male" 1

6 "You 're as sober as can be expected."

7 ghci > drink "female" 8

8 "Stop drinking."

The code is, however, yucky (and that's putting it mildly). The other solution is to use another function to
calculate the bac.

1 -- File: drink -calc.hs (FIXED)

2 bac :: (Fractional a, Ord a) => String -> a -> a

3 bac sex n = n * if sex == "male" then 0.025 else 0.035

4
5 drink :: (Fractional a, Ord a) => String -> a -> String

6 drink sex n -- Blood Alcohol Concentration

7 | bac sex n < 0.03 = "You 're as sober as can be expected."

8 | bac sex n < 0.08 = "You can drive , but it's a bad idea."

9 | bac sex n < 0.10 = "Your reasoning is out the window."

10 | otherwise = "Stop drinking."

It still works and it's a tad shorter, but that's about it. We're still repeating ourselves and we've just
introduced a function that we're not going to use anywhere else. With what we know so far, there's nothing
we can do.

4.2.2. Where Bindings

This is where where bindings come into play. We're not going to improve bac right away � let's start with
an example.
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1 -- File: gpa.hs

2 gpa :: [Int] -> Int -> Int

3 gpa grades final = func grades + final

4 where func :: [Int] -> Int

5 func xs = sum xs `div ` length xs

It is time to take a moment and contemplate this function.

Okay, moment's over. So what do we have here? Why, a GPA calculator, of course. This one seems to do
something with the grades then add it to the �nal. If we only read the �rst line, we don't know what func
does. Neither does the compiler.

The where keyword introduces a section that contains de�nitions. In our case, func is de�ned just like we
learned. It's easy to see what it does. The type de�nition tells us that it takes a list of integers and returns
only one, and the body indicates it averages those numbers14. So gpa adds the �nal to the average of the
other grades. Pretty simple.

Another thing: inside where sections we can have the usual gimmicks: type declarations (which are usually
omitted15), multiple function bodies, pattern matching etc. It's just like our typical function (or name)
de�nition. We can even put a where inside a where!

In fact, pattern matching inside where sections is so useful and important, it's worth giving a speci�c example.

1 -- File: stutter.hs

2 stutter :: String -> String

3 stutter word = [w] ++ "-" ++ [w] ++ "-" ++ word

4 where (w:_) = word

It's [w], not w because ++ takes strings, not characters. The keen reader would notice that we can also do
things like where w = head word. No matter how we write it, we should be consistent with our choices.

1 ghci > stutter "hello"

2 "h-h-hello"

These are the basics of where bindings. Now it's time to improve our calculator (in three easy steps). This
is the initial code:

1 bac :: (Fractional a, Ord a) => String -> a -> a

2 bac sex n = n * if sex == "male" then 0.025 else 0.035

3
4 drink :: (Fractional a, Ord a) => String -> a -> String

5 drink sex n

6 | bac sex n < 0.03 = "You 're as sober as can be expected."

7 | bac sex n < 0.08 = "You can drive , but it's a bad idea."

8 | bac sex n < 0.10 = "Your reasoning is out the window."

9 | otherwise = "Stop drinking."

Problems:

� We're repeating ourselves.

� We have a function that we use nowhere else.

� The code is slightly confusing.

The obvious thing to do is put bac in a where section (not to worry, the where is visible to all the guards).

14We should have called it average or avg or something instead of func.
15Because functions inside where sections are usually short and simple. If one becomes too long, consider writing it separately.
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1 drink :: (Fractional a, Ord a) => String -> a -> String

2 drink sex n

3 | bac sex n < 0.03 = "You 're as sober as can be expected."

4 | bac sex n < 0.08 = "You can drive , but it's a bad idea."

5 | bac sex n < 0.10 = "Your reasoning is out the window."

6 | otherwise = "Stop drinking."

7 where bac :: (Fractional a, Ord a) => String -> a -> a

8 bac sex n = n * if sex == "male" then 0.025 else 0.035

Problems:

� We're repeating ourselves.

� We have a function that we use nowhere else.

� The code is slightly confusing.

Now we get rid of bac's type declaration � the function is simple enough. We also notice that sex n is
redundant (drink already has the parameters sex and n, which can be used in the where section).

1 drink :: (Fractional a, Ord a) => String -> a -> String

2 drink sex n

3 | bac < 0.03 = "You 're as sober as can be expected."

4 | bac < 0.08 = "You can drive , but it's a bad idea."

5 | bac < 0.10 = "Your reasoning is out the window."

6 | otherwise = "Stop drinking."

7 where bac = n * if sex == "male" then 0.025 else 0.035

Problems:

� We're repeating ourselves.

� We have a function that we use nowhere else.

� The code is slightly confusing.

Finally, let's make the function easier to understand and modify by giving names to 0.03, 0.08 and 0.10.
This way we can be sure we understand what they mean and also easily modify them (for instance, France
has a 0.05 limit for driving).

1 drink :: (Fractional a, Ord a) => String -> a -> String

2 drink sex n

3 | bac < soberLimit = "You 're as sober as can be expected."

4 | bac < drivingLimit = "You can drive , but it's a bad idea."

5 | bac < thinkingLimit = "Your reasoning is out the window."

6 | otherwise = "Stop drinking."

7 where bac = n * if sex == "male" then 0.025 else 0.035

8 soberLimit = 0.03

9 drivingLimit = 0.08

10 thinkingLimit = 0.10

Problems:

� We're repeating ourselves.

� We have a function that we use nowhere else.

� The code is slightly confusing.

Now we're ready to move on. Oh, and one more thing. We must align things neatly following the where

part, or the code might not compile or function correctly.
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Warning! In where sections, not aligning the code can yield undesirable results.

However, placing the where on a separate line is allowed, like in the following example:

1 -- File: cone.hs

2 coneVolume :: Floating a => a -> a -> a

3 coneVolume r h = baseArea * h / 3

4 where

5 baseArea = pi * r^2

4.2.3. Let Bindings

We'll recycle the above example for our purposes.

1 -- File: cone -let.hs

2 coneVolume :: Floating a => a -> a -> a

3 coneVolume r h =

4 let baseArea = pi * r^2

5 in baseArea * h / 3

It seems pretty intuitive. One might say let bindings are just like where bindings, only with the order
reversed � let <bindings> in <expression>, as opposed to <expression> where <bindings>. There's
much more to them, though. A mountain of examples follows (and not many words).

For a start, let is not unlike the if statement; we can jam it pretty much everywhere � interactive...

1 ghci > let a = 3 in 2 * a

2 6

3 ghci > 4 + 5 * (let x = 5 in 2 * x)

4 54

5 ghci > 2 + 3 * (let e = 2.718281828 in e * (e + 1))

6 32.32201377330506

7 ghci > "hello" ++ (let w = " world" in w ++ w ++ w)

8 "hello world world world"

... and loaded from a �le (just like where bindings, let bindings must be properly aligned).

1 -- File: cone -area.hs

2 coneArea :: Floating a => a -> a -> a

3 coneArea r h =

4 let baseArea = pi * r^2

5 sideArea = let l = sqrt (r^2 + h^2) in pi * r * l

6 in baseArea + sideArea

We can perform many neat tricks using let, such as:

� Binding several variables inline16 using semicolons.

1 ghci > let x = 4; y = 5; z = 6 in (x + y) * z

2 54

3 ghci > "Hello " ++ (let x = "world"; y = "wide " in y ++ x) ++ "!"

4 "Hello wide world!"

� Using pattern matching

16A fancy way of saying �in (the middle of) a single line�.
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1 ghci > let (x, y) = (3, 2) in y * x

2 6

3 ghci > let x:y:_ = "asdf" in y:x:[]

4 "sa"

5 ghci > 4 + (let a:b:c:_ = [5 ,10..] in c - b + a)

6 14

� Putting them inside list comprehensions

1 ghci > [ x | x <- [1..10] , let a = 8*x, a < 50]

2 [1,2,3,4,5,6]

3 ghci > [ x:xs | x <- ['a'..'c'], let xs = "ghj"]

4 ["aghj","bghj","cghj"]

� Nesting them.

1 ghci > let x = 4 in let y = 5 in x + y

2 9

3 ghci > let a = 'h' in let as = "ello" in a:as

4 "hello"

When de�ning several variables with let, we can use one in the de�nition of another.

1 ghci > let x = 4; y = 2*x in x + y

2 12

3 ghci > let x = 5; y = 3 + x; z = x * y in x + y - z

4 -27

We can also do it in any order.

1 ghci > let y = 2*x; x = 4 in x + y

2 12

3 ghci > let y = 3 + x; z = x * y; x = 5 in x + y - z

4 -27

It won't work, however, in separate lets or if we try to use a variable prior to its let binding.

1 ghci > [ x | x <- [1..10] , y < 2, let y = x - 5]

2
3 <interactive >:1:21: Not in scope: `y'

4 ghci > let y = 2 * x in (let x = 4 in y + x)

5
6 <interactive >:2:13: Not in scope: `x'

Additionally, let bindings are not visible across guards. All these drawbacks are the result of a very simple
things: let bindings are very �local�; they are only visible where we de�ne them � we talk more about local
things in A.2.1. For instance:

1 Prelude > let a = 3 in 2 * a

2 6

3 Prelude > a

4
5 <interactive >:2:1: Not in scope: `a'

6 ghci > (let b = 5 in 4 * b) + b
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7
8 <interactive >:3:24: Not in scope: `b'

9 ghci > [ x | x <- [1..10] , let c = 2*x, c < 5] ++ [c]

10
11 <interactive >:4:45: Not in scope: `c'

There is only one exception to this rule: we can omit the in part when de�ning things interactively; this
way, the names will be visible during the entire interactive session (but not the next).

1 ghci > let a = 5; b = 6

2 ghci > "hello world"

3 "hello world"

4 ghci > a + b

5 11

6 ghci > :q

7 Leaving GHCi.

8 ee@bt:~$ ghci

9 GHCi , version 7.4.1: http ://www.haskell.org/ghc/ :? for help

10 Loading package base ... linking ... done.

11 Prelude > a + b

12
13 <interactive >:2:1: Not in scope: `a'

14
15 <interactive >:2:5: Not in scope: `b'

It's time for a little discussion and recap.

The let <bindings> in <expression> syntax allows let to be put anywhere, especially inside larger ex-
pressions. That's the most important di�erence between let and where.

Interestingly, let bindings are so local, that it somehow limits their usefulness17. Coincidentally, this is also
one of their great advantages.

The above reasons, and more, bring us to our �nal point: let and where are not always interchangeable �
where is better with guards; let, inside larger expressions.

4.2.4. Bonus: Case Expressions

Just like [1, 2, 3] is syntactic sugar for 1:2:3:[], pattern matching (in function de�nitions) is just syn-
tactic sugar for case expressions.

1 -- File: case -expr.hs

2 tail ' :: [a] -> [a]

3 tail ' [] = error "tail ': empty list"

4 tail ' (_:xs) = xs

We've just implemented our version of tail using pattern matching (in function de�nitions). Let's see how
it looks with case expressions.

1 -- File: case -expr.hs (FIXED)

2 tail ' :: [a] -> [a]

3 tail ' all = case all of [] -> error "tail ': empty list"

4 (_:xs) -> xs

17The biggest problem is that they won't work with guards the way we want them to.
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The syntax for case expressions is pretty much self-explanatory. A longer example, just to consolidate our
knowledge:

1 -- File: case -expr2.hs

2 f :: Int -> String

3 f n = case n of 1 -> "one"

4 2 -> "two"

5 _ -> "many"

Of course, those can be any patterns, not just numbers. If it's not 100% clear yet, this is the syntax:

1 -- Syntax: case expressions (in function definitions)

2 function argument = case argument of pattern1 -> result1

3 pattern2 -> result2

4 pattern3 -> result3

5 pattern4 -> result4

6 ...

We've been very careful to mention �in function de�nitions� repeatedly. That's because, technically, case
expressions make use of pattern matching, so it's not really fair to compare the two.

Their main advantage is that case expressions work anywhere, just like let bindings. Basically, they enable
pattern matching anywhere we desire. We can put them in the middle of an expression, for example.

1 -- File: case -expr3.hs

2 f :: (Show a) => [a] -> String

3 f [] = "This list is empty. Sorry."

4 f [x] = "This list is a singleton , with the element: " ++ show x

5 f (x:_) = "This list is longer. Its head is: " ++ show x

1 -- File: case -expr3.hs (FIXED)

2 f :: (Show a) => [a] -> String

3 f xs = "This list is " ++ case xs of [] -> "empty. Sorry."

4 [x] -> "a singleton , with the 

element: " ++ show x

5 (x:_) -> "longer. Its head is: " ++

show x

The reason we don't use case expressions all the time is much like the reason we don't abuse let bindings:
they are ever-so-slightly less readable18 than the alternatives. Syntactic sugar in general o�ers a clearer
exposition at the expense of power.

In fact, after this chapter on syntax, we've seen many alternative ways of solving a given problem. Which
one to use is left at the reader's discretion.

18Some people may disagree.
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Primitive recursion is the goto of functional
programming.

(anonymous)

5.1. Basic Implementation

5.1.1. Understanding Recursion

Recursion is perhaps one of the most powerful tools in all of Haskell1. According to Wikipedia, recursion
is the process of repeating items in a self-similar way. In programming, recursion is a method of de�ning
functions in which the function is applied within its own de�nition. Simply put, a recursive function is a
function that calls itself.

To understand the principle, this chapter concerns itself only with explicit (also called primitive) recursion
� the easiest and most basic form of recursion. Later (in [XREF]) we will see many cool functions that
perform recursion for us.

The simplest example is the factorial2. We can write factorial n = product [1..n], but that's not the
de�nition we're looking for. This is:

1 -- File: factorial.hs

2 factorial :: Integral a => a -> a

3 factorial 0 = 1

4 factorial n = n * factorial (n - 1)

1 ghci > factorial 3

2 6

3 ghci > factorial 5

4 120

It works, but why? Let's see what GHCi does if we try to call factorial 4.

1. factorial 4 is 4 * factorial 3.

2. factorial 3 is 3 * factorial 2, so factorial 4 is 4 * (3 * factorial 2).

3. factorial 2 is 2 * factorial 1, so factorial 4 is 4 * (3 * (2 * factorial 1)).

4. factorial 1 is 1 * factorial 0, so factorial 4 is 4 * (3 * (2 * (1 * factorial 0))).

5. factorial 0 is 1, so factorial 4 is 4 * (3 * (2 * (1 * 1))).

6. factorial 4 is 4 * (3 * (2 * 1)).

7. factorial 4 is 4 * (3 * 2).

8. factorial 4 is 4 * 6.

9. factorial 4 is 24.

1Author's note: it took all my willpower not to start with a recursion joke1.
2The factorial of a (non-negative) integer n is the product of integers from 1 to n. The factorial of 0 is, by convention, 1.
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10. Done!

At this point, it's useful to make our line-by-line analysis. Here's the function again, without that pesky
�rst line comment:

1 factorial :: Integral a => a -> a

2 factorial 0 = 1

3 factorial n = n * factorial (n - 1)

1. The type de�nition is important; the factorial doesn't make sense over non-integers3. Actually, it
doesn't work on negative numbers either (which we'll discuss in 5.3.1).

2. Without this line, the function would never �nish. factorial 1 would be 1 * (0 * (-1 * (-2 ....
This is called the �base case� or �edge condition�. We'll discuss it in a moment.

3. This one puts an operation on hold (namely multiplication), then brings the evaluation closer to the
base case. Eventually it will reach it, the pending operations will be performed, and the computation
will end, as seen in the elaboration above.

Sounds complicated? Because it is. The above operations aren't meant to be our concern. The compiler
can do them without our help. We should understand recursion intuitively, and to do that, we must think
simpler.

Here's a little something to break the wall of text, and then we'll move on.

1 ________ _____

2 ___ __ \_____ ___________ _____________________(_)______ _______

3 __ /_/ /_ _ \_ ___/_ / / /__ ___/__ ___/__ / _ __ \__ __ \

4 _ _, _/ / __// /__ / /_/ / _ / _(__ ) _ / / /_/ /_ / / /

5 /_/ |_| \___/ \___/ \__,_/ /_/ /____/ /_/ \____/ /_/ /_/

The bottom line is, a recursive function has two main elements:

1. The �base case� � the simplest one, where we already know the answer. The base case is where the
calculation ends. Some examples:

a) The factorial of 0 is 1. We know this because it's convention. Can it get any simpler? Not really.

b) The length of an empty list is 0. We know that because it's obvious.

c) The maximum of a single number is that number.

2. All other cases � here we must bring evaluation closer to the base case. We must simplify. Why?
Because the base case is the only way our calculation can �nish. We must reach it. To reach it, we
must get closer. Some examples:

a) The factorial of n is n times the factorial of n− 1; n− 1 is closer to 0, so we're on the right track.

b) The length of a list is one plus the length of the list without the �rst element ; if we repeat this
enough times, we'll reach the empty list, as planned.

c) The maximum of a list is the �rst element or the maximum of the list without the �rst element,
whichever is larger.

In all three situations, the regular cases bring us closer to the edge condition (base case), thus guaranteeing
that the computer will, in fact, �nish calculating and provide a result.

3Actually it does � it's called the Gamma function.
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5.1.2. Practical Examples

It is time to put the above into code. The factorial has already been done. Let's try the length4 one.

1 -- File: length.hs

2 length ' :: [a] -> Int

3 length ' [] = 0

4 -- what are we supposed to do now?

Obviously, the list with the �rst element is one longer then the list without it. We should somehow write
this down, but to do it, we must separate the list into its �rst element and the rest. Do we know something
that does that?

Yes, it's the x:xs pattern. We've already covered some of its uses, but here is a quick refresher:

1 -- File: xxs.hs

2 super :: String -> String

3 super (x:xs) = "First letter: " ++ [x] ++ "; the rest: " ++ xs

1 ghci > super "Greetings!"

2 "First letter: G; the rest: reetings!"

Now we can state the obvious, clearly and concisely.

1 length ' (x:xs) = 1 + length ' xs

And that's it! If we put it inside our original code, it works like a charm.

1 -- File: length.hs (FIXED)

2 length ' :: Num a => [b] -> a

3 length ' [] = 0

4 length ' (x:xs) = 1 + length ' xs

1 ghci > length ' [1,2,3,4]

2 4

3 ghci > length ' "haskell"

4 7

We might even notice that we're not using x (from the x:xs), so we can write length' (_:xs).

To determine the maximum of a list, we have to, once again, separate the list into a head and a tail. This
time we get to see the completed code directly.

1 -- File: maximum.hs

2 maximum ' :: Ord a => [a] -> a

3 maximum ' [] = error "maximum ' of empty list"

4 maximum ' [x] = x

5 maximum ' (x:xs) = max x (maximum ' xs)

In a dramatic twist of events, this function has two edge conditions. The �rst will be reached if (and only
if) we supply [] � the maximum of an empty list doesn't make sense. The other one is the �normal� base
case we all know and love � the maximum of a single element is itself.

The third pattern compares the head with the maximum of the tail to determine which one is bigger. Notice
how max operates on 2 elements while maximum' works on an entire list.

1 ghci > maximum ' [1,3,4,2,5,2]

2 5

4We're using length' because length already exists, and we must have a di�erent name.
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5.1.3. More Parameters

A recursive function can take any number of parameters. Knowing that, we'll try to implement our own
replicate. replicate repeats an element a speci�ed number of times (so 2 parameters).

1 ghci > :t replicate

2 replicate :: Int -> a -> [a]

3 ghci > replicate 5 2

4 [2,2,2,2,2]

5 ghci > replicate 6 'a'

6 "aaaaaa"

It's easier if we try to implement it for a certain element, say 'A'. Our edge condition is trying to repeat it
0 times. We'll call the function screamer5.

1 -- File: screamer.hs

2 -- replicate when applied to the letter 'A'

3 screamer :: Int -> String

4 screamer 0 = [] -- it's the same as ""

5 screamer n = 'A' : screamer (n-1)

Obviously, replicate works with any element � if we pass it as an extra parameter it should work.

1 -- File: replicate.hs

2 replicate ' :: Int -> a -> [a]

3 replicate ' 0 _ = []

4 replicate ' n x = x : replicate ' (n-1) x

1 ghci > replicate ' 3 'b'

2 "bbb"

3 ghci > replicate ' 2 "Hi"

4 ["Hi","Hi"]

This time, one of the parameters (namely, the second one) always remained unchanged. But it is not always
so. We can manipulate several parameters when writing a recursive function. This very dumb implementation
of compare, which only works on positive integers, is a... good(ish) example.

1 -- File: dumb -compare.hs

2 cmp :: Integer -> Integer -> Ordering

3 cmp 0 0 = EQ

4 cmp 0 _ = LT

5 cmp _ 0 = GT

6 cmp x y = cmp (x-1) (y-1)

This example also illustrates a good rule of thumb6: the number of base cases is usually equal to the number
of possible outcomes. In this case, it's three: EQ, LT and GT.

Anyway, the principle of this function is very simple. It decrements both parameters, until one reaches zero.
The other is larger. Is there an even more ine�cient version of compare? I have no idea.

take takes taking elements from a list to a whole new level. Example, then code.

1 ghci > take 3 [1, 2, 3, 4]

2 [1,2,3]

3 ghci > take 5 [1, 2, 3, 4]

4 [1,2,3,4]

5replicateA might sound tempting, but it's already taken (see [XREF]).
6Not to be followed blindly.

48



5. Recursion

1 -- File: take.hs

2 take ' 0 _ = []

3 take ' _ [] = []

4 take ' n (x:xs) = x : take ' (n-1) xs

Notice how the two outcomes become base cases. We either

� take 0 elements from a list, or

� try to take elements from an empty list.

In both cases, the result is []. The general case is very simple, too. Taking n elements from a list is basically
taking the �rst element, then n-1 elements from the rest of the list.

Next up, zip. This function takes two lists and combines them together into a list of pairs. It stops when
one of the lists is empty, so zip "abc" [1, 2] is [('a',1),('b',2)].

The two edge conditions correspond to empty lists (the �rst and the second, respectively). The general case
separates both lists in a head and a tail.

1 -- File: zip.hs

2 zip ' :: [a] -> [b] -> [(a, b)]

3 zip ' [] _ = [] -- First list empty

4 zip ' _ [] = [] -- Second list empty

5 zip ' (x:xs) (y:ys) = (x, y) : zip ' xs ys

5.2. Variations

5.2.1. Using Guards

If we're not careful, we might as well end up with a function that runs inde�nitely, or worse7. This usually
happens if the edge condition is poorly written, or if the general case does not lead to the edge condition.
Half the functions we've written so far have some sort of problem. That's not very encouraging.

Our version of replicate (also, screamer) weirds out when we give it a negative number of repetitions. The
prede�ned function works �ne.

1 ghci > replicate ' (-2) 5

2 [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,^ CInterrupted.

3 ghci > replicate (-2) 5

4 []

Warning! Make sure your function behaves correctly even on unexpected input.

The problem? Our edge condition should also check for negative numbers. The easy way to do it is to use a
guard.

1 -- File: replicate.hs (FIXED)

2 replicate ' :: Int -> a -> [a]

3 replicate ' n _ | n <= 0 = []

4 replicate ' n x = x : replicate ' (n-1) x

This is one of the few acceptable uses of inline guards. Notice the absence of an otherwise clause. This is
because if evaluation reaches the end of the guards, it will fall down to the next pattern (which, in our case,
catches everything).

In this instance, we can also use otherwise and a single function body.

7What's worse than an in�nitely running program? A wrong result.
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1 -- File: replicate2.hs

2 replicate ' :: Int -> a -> [a]

3 replicate ' n x

4 | n <= 0 = []

5 | otherwise = x : replicate ' (n-1) x

Sometimes the function does something unimaginable. Our stupid cmp is �at-out wrong on negative numbers.
The relevant parts, then illustration:

1 cmp 0 0 = EQ

2 cmp 0 _ = LT

3 cmp _ 0 = GT

4 cmp x y = cmp (x-1) (y-1)

1 ghci > cmp 2 3

2 LT

3 ghci > cmp (-2) 3

4 GT

5 ghci > cmp (-2) (-3)

6 ^CInterrupted.

Why does this happen? The program assumes that the �rst number to reach 0 is smaller. But if we decrease
an already negative number, it will never become 0. So the other one will be 0 �rst, and will be declared the
smallest. If both are negative, then the function will continue to run, and run, and run (until we run out of
memory)8.

Here is the corrected function:

1 -- File: dumb -compare.hs (FIXED)

2 cmp :: Ord a => a -> a -> Ordering

3 cmp x y

4 | x == y = EQ

5 | x <= y = LT

6 | otherwise = GT

The dumb implementation is doomed. There is no way we can get something usable out of it, so we should
just trash it.

5.2.2. Multiple �Regular� Cases

Some recursive functions have di�erent behavior for di�erent types of input, say, even and odd numbers.
This means that we have several separate cases. This can be easily achieved by using pattern matching or
guards.

The classic example is the Collatz sequence. Take a positive integer.

� If it's even, divide it by two.

� If it's odd, multiply it by three and add one.

It is thought (but not proven) that after a �nite number of steps, all numbers will eventually reach 1. By
virtue of this fact, we know our edge condition. The two regular cases are for even and odd, respectively.

8Experienced programmers out there: Integer is unbounded, so it will never wrap around.
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1 -- File: collatz.hs

2 collatz :: Integral a => a -> [a]

3 collatz 1 = [1]

4 collatz n

5 | even n = n : collatz (n `div ` 2)

6 | otherwise = n : collatz (3*n + 1)

This function is especially dangerous because we don't actually know if it will �nish. Still, let's take it for a
spin.

1 ghci > collatz 5

2 [5,16,8,4,2,1]

3 ghci > collatz 20

4 [20,10,5,16,8,4,2,1]

Of course, we can simply check the lengths. Some inputs are especially pesky9.

1 ghci > length (collatz 27)

2 112

3 ghci > length (collatz 6171)

4 262

5.2.3. In�nite Recursion

It's easier than it looks. Haskell already supports in�nite lists, so it should be a breeze to write versions of
the following two functions:

� repeat repeats an element an in�nite number of times

� cycle repeats an entire list

The easy way to do it is to simply omit the edge condition, like this:

1 -- File: inf -recursion.hs

2 repeat ' :: a -> [a]

3 repeat ' x = x : repeat ' x

4
5 cycle ' :: [a] -> [a]

6 cycle ' xs = xs ++ cycle ' xs

Without a base case, the function is all but guaranteed to run inde�nitely. That is, unless we take a �nite
number of elements (because of laziness).

1 ghci > take 5 (repeat ' 0)

2 [0,0,0,0,0]

3 ghci > take 10 (cycle ' [1, 2, 3])

4 [1,2,3,1,2,3,1,2,3,1]

5.3. Further Expansion

5.3.1. Using Natural Numbers [FIXME-move to adv. types]

Every time we used some sort of �counter� which we decreased until it reached zero, we used some sort of
integer. Recall the factorial function:

9The Online Encyclopedia of Integer Sequences has collected a list specially for the purpose: A006877.
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1 factorial :: Integral a => a -> a

2 factorial 0 = 1

3 factorial n = n * factorial (n - 1)

But, as we mentioned, the factorial doesn't make much sense over negative numbers. In 5.2.1 we even pointed
out that such functions might even run inde�nitely on negatives. In that spirit, the solution is:

1 factorial :: Integral a => a -> a

2 factorial n | n < 0 = error "factorial over negative numbers"

3 factorial 0 = 1

4 factorial n = n * factorial (n - 1)

That's more of a workaround rather than a �x, however. Someone casually looking at the type de�nition
might imagine that the function works over all integers. This is obviously not the case.

The �right� way to do it is to use the appropriate type for the function; something like Nat representing
natural numbers would be welcome. This is a hypothetical example; no such type exists in the standard
libraries.

[FIXME]

1 factorial :: Nat -> Nat

2 factorial 0 = 1

3 factorial n = n * factorial (n - 1)

5.3.2. Application: Quicksort

We have tried to postpone this moment as long as possible. It's time for the most overused piece of Haskell
code in history: quicksort.

� What it does: it sorts a list (duh).

� How it does it: a sorted list is10 the list with

� the elements less than or equal to the head, sorted, followed by

� the head of the list, followed by

� the elements greater than the head, sorted.

� What's interesting for us is that we must call quicksort twice in its de�nition (once for the smaller
elements and once for the larger ones)

So, without further ado:

1 -- File: quicksort.hs

2 quicksort :: Ord a => [a] -> [a]

3 quicksort [] = []

4 quicksort (x:xs) = lesserSorted ++ [x] ++ greaterSorted

5 where lesserSorted = quicksort [ y | y <- xs, y <= x ]

6 greaterSorted = quicksort [ y | y <- xs, y > x ]

1 ghci > quicksort [4,1,5,3,8,7]

2 [1,3,4,5,7,8]

3 ghci > quicksort "the five boxing wizards jump quickly"

4 "     abcdeefghiiiijklmnopqrstuuvwxyz"

10We can't say �it does this, then it does that�, because it defeats the purpose of functional programming, which emphasizes
how things are de�ned, rather then how they are done.
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This implementation of quicksort is surprisingly easy to understand. The function will take the head of the
list, 4 and then put it between [1,3] and [5,8,7] (after they've been sorted).

Such an algorithm is called �divide and conquer� because it literally11 breaks the input into two easier-to-
manage halves, each of them broken down even more, until we reach empty lists, which are already sorted.
The pieces are then put back together in the correct order.

Unfortunately, if we perform the detailed breakdown on this function, we clearly see that the algorithm
performs many useless operations (concatenating all those empty lists), so it might not be terribly e�cient.
[FIXME-double check]

1 -- Evaluation steps

2 quicksort [4,1,5,3,8,7] = quicksort [1,3] ++ [4] ++ quicksort [5,8,7]

3 quicksort [1,3] = quicksort [] ++ [1] ++ quicksort [3]

4 quicksort [] = []

5 quicksort [3] = quicksort [] ++ [3] ++ quicksort []

6 quicksort [] = []

7 quicksort [] = []

8 quicksort [5,8,7] = quicksort [] ++ [5] ++ quicksort [8,7]

9 quicksort [] = []

10 quicksort [8,7] = quicksort [7] ++ [8] ++ quicksort []

11 quicksort [7] = quicksort [] ++ [7] ++ quicksort []

12 quicksort [] = []

13 quicksort [] = []

14 quicksort [] = []

15 [] ++ [1] ++ [] ++ [3] ++ [] ++ [4] ++ [] ++ [5] ++ [] ++ [7] ++ [] ++ [8]

++ []

16 [1,3,4,5,7,8]

Indeed, running quicksort on [100000,99999..1] takes quite some time and maxes out the memory. From
now on, we'll just import Data.List, which conveniently contains an e�cient sorting function, sort12. For
more Data.List goodies, see C.1.

1 ghci > import Data.List

2 ghci > sort [3,5,8,2,1]

3 [1,2,3,5,8]

5.3.3. Discussion

All of the functions that we have implemented in this chapter have some common ground. For instance:

� Separating a list into a head and a tail until we reach [].

� Having some number and then decreasing it until it becomes 0.

� Breaking down a list into several smaller parts.

By far the most widely used data structure in this chapter was the list. Somehow lists lend themselves to
being recursed upon simply because of the convenient x:xs pattern which, on one hand, extracts an element
which can be used and, on the other hand, leaves the rest of the list available for further operations.

One of the main development directions in Haskell is abstraction. Sadly, in this book, this path has been
so far left unexplored (because we were busy understanding syntax). Speci�cally, the primitive (explicit)
recursion we have performed so far in this chapter allows us to consider only particular cases. For instance,
this is an implementation of sum:

11Figuratively.
12Based on mergesort.
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1 sum [] = 0

2 sum (x:xs) = x + sum xs

And this is an implementation of product:

1 product [] = 1

2 product (x:xs) = x * product xs

The function and operates on booleans, and tells us if all of them are True. Here it is:

1 and [] = True

2 and (x:xs) = x && and xs

Likewise, the function or:

1 or [] = False

2 or (x:xs) = x || or xs

A pattern emerges. All these concrete examples have the same basic structure, but we do not yet know how

to take advantage of it. There must be a function that covers all these use cases. There is.

We've barely scratched the surface.
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I've come to see the power of Haskell at last.
You have to treat functions like crap.

(nikki93)

6.1. Currying and Partial Application

6.1.1. Fundamentals

Every function in Haskell takes exactly one parameter. Multiple-parameter functions exist because of what
is o�cially called currying � it's very clever. Let's refer to our �rst Problem Z example (way back, in 1.2.4).

1 compare 2 3 -- works

2 compare (2 3) -- doesn 't work

3 (compare 2) 3 -- works!!

We've learned why the �rst one works and the second doesn't: spaces are used for function application and
parentheses for grouping, not the other way around.

To see why the third one works, we must understand what compare 2 3 does. It �rst takes the parameter
2 and returns a function that takes a parameter and compares 2 with it. That function is then applied to 3
and it �nally returns LT. Read that again.

If we take a look at compare's type, it's compare :: Ord a => a -> a -> Ordering. Up until now, we've
said that it takes two parameters.

But now we realize that a -> a -> Ordering is the same as a -> (a -> Ordering). So the function, in
fact, takes only one parameter (an a) and returns an a -> Ordering, which is a function (that takes an a

and returns an Ordering).

Let's discuss a clearer example.

1 -- File: currying.hs

2 addFour :: Int -> Int -> Int -> Int -> Int

3 -- we can also write Int -> (Int -> (Int -> (Int -> Int)))

4 addFour x y z t = x + y + z + t

Now if we add parameters one at a time:

1 ghci > :t addFour

2 addFour :: Int -> Int -> Int -> Int -> Int

3 ghci > :t addFour 1

4 addFour 1 :: Int -> Int -> Int -> Int

5 ghci > :t addFour 1 2

6 addFour 1 2 :: Int -> Int -> Int

7 ghci > :t addFour 1 2 3

8 addFour 1 2 3 :: Int -> Int

9 ghci > :t addFour 1 2 3 4

10 addFour 1 2 3 4 :: Int
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Every time we add another parameter, the type gets �eaten up� from the left. That is because if we call
a function with too few parameters, we'll get a function that takes the rest of them. This is called partial

application. In other words, if f �takes� n parameters1: a1, a2, a3, ..., an, then:

� f a1 �takes� n− 1 parameters: a2, a3, a4, ..., an

� f a1 a2 �takes� n− 2 parameters: a3, a4, ..., an

� etc.

This is also the chief reason why everything is separated by -> in type declarations. If we clearly distinguished
the parameters from the return type, we couldn't have parially applied functions and thus, indirectly, we
wouldn't be able to do other neat things, like name them.

1 ghci > let compare2With = compare 2

2 ghci > compare2With 5

3 LT

4 ghci > compare2With 1

5 GT

6 ghci > compare2With 2

7 EQ

Do we know some other way of de�ning compare2With? Of course, compare2With x = compare 2 x. We've
done things this way many times before. I know we're repeating ourselves, but let's see them again.

1 compare2With x = compare 2 x -- the way we've done things

2 compare2With = compare 2 -- equivalent to the above

Notice how x was present on the right side on both hand-sides of the �rst equation. Therefore, x is super�uous
(it can safely be removed). Watch out, though, because in something like compare2With x = compare x 2

(x on the left), x can't be eliminated without changing the meaning.

Warning! Partial application only occurs from left to right (beginning with the �rst parameter).

Actually it's pretty di�cult to explain rigorously. It's something that is very intuitive but nevertheless hard
to elaborate. It's like in mathematics. We can say that �the function f applied to x adds 2 to x� or we can
simply state �the function f adds 2�. It's implied that it adds 2 to its parameter2.

So there you have it. Currying is often confused with partial application, but they are really quite di�erent:

� Currying is what makes a function take only one parameter and return a function that takes another
parameter and so on. We'll discuss it a little later, in [XREF].

� Partial application is the act of supplying a function with too few arguments.

Currying and partial application are two of the most important concepts in all of Haskell, so it's a good idea
to be familiar with them.

6.1.2. Problem Z

We've put all the cool things that happen because of currying and partial application under the umbrella
term Problem Z. Now it's time to revisit them.

In 2.1.3 we said that a constant really is a zero-parameter function. It makes sense if we think about it �
there are no parameters for us to change so the result will always be the same. Do we know what else takes
zero parameters? A fully-applied function. Take compare 2 3 for instance.

1We're going to say that a function takes n parameters for simplicity, even though we know what's actually going on.
2What else can it add 2 to?
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1 ghci > :t compare 2 3

2 compare 2 3 :: Ordering

3 ghci > :t LT

4 LT :: Ordering

5 ghci > LT == compare 2 3

6 True

Moving on, when we discussed in�x functions (in 2.1.4) we illustrated how in�x functions can be called pre�x.

1 ghci > 2 + 3

2 5

3 ghci > (+) 2 3

4 5

This enables us to partially apply them3.

1 ghci > :t (+) 2

2 (+) 2 :: Num a => a -> a

However, there is a simpler, more intuitive way, by using sections. Simply put, we omit one of the sides:

1 ghci > :t (2/)

2 (2/) :: Fractional a => a -> a

3 ghci > :t (/2)

4 (/2) :: Fractional a => a -> a

We still have to put them in parentheses because otherwise the compiler will treat them as incomplete
expressions.

Sections have another advantage. Notice the di�erence between the following two:

1 ghci > (2/) 3

2 0.6666666666666666

3 ghci > (/2) 3

4 1.5

In the second example, we've partially applied the second parameter. Neat, huh?

Speaking of sections, we might be tempted to do something like (3,) 2, but the compiler will scream at us.

1 ghci > (3,) 2

2
3 <interactive >:1:1: Illegal tuple section: use -XTupleSections

What GHCi means by this is that it recognizes what we're trying to do, but won't allow it. It also mentions
that if we open GHCi with the option -XTupleSections, it will work just �ne.

1 ee@bt:~$ ghci -XTupleSections

2 GHCi , version 7.4.1: http ://www.haskell.org/ghc/ :? for help

3 Loading package base ... linking ... done.

4 Prelude > :set prompt "ghci > "

5 ghci > (3,) 2

6 (3,2)

But why bother when we can just use (,) instead?

3This is not the main advantage, however. Details in [XREF].
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1 ghci > :t (,) 3

2 (,) 3 :: Num a => b -> (a, b)

3 ghci > (,) 3 2

4 (3,2)

6.1.3. When It's Not

[FIXME-need to have it in appendices and xref to it, possibly earlier]

6.2. Higher Order Functions

6.2.1. Passing Functions as Parameters

One very nice thing about functions, and one of the coolest and most powerful things in all of Haskell, is that
functions can take functions as parameters. The simplest example (we've intentionally given the following a
name that's not revealing) is this:

1 f2 :: (a -> a) -> a -> a

2 f2 f x = f (f x)

What's with the parentheses in the type declaration? They indicate that the whole (a -> a) thing is a
single parameter: a function that takes something of a type and returns something of the same type. We
need them because the -> is right-associative � otherwise it would treat the �rst a and the second a as
separate, single parameters4.

On to the body of the function: f2 takes a function, f, and a value, x. What it does is apply f to x (the
f x part), then apply f again to the result. Essentially, f2 applies a function twice. In Mathematics class
we would have written something like f2 (x) = f (f (x)). Notice the similarity.

1 ghci > succ 3 -- successor

2 4

3 ghci > succ 4

4 5

5 ghci > succ (succ 3)

6 5

7 ghci > f2 succ 3

8 5

9 ghci > f2 pred 3 -- predecessor

10 1

11 ghci > f2 sqrt 16

12 2.0

13 ghci > f2 tail "abcd"

14 "cd"

15 ghci > f2 head "abcd" -- whoops , we need the function to return the same

type

16
17 <interactive >:22:4:

18 Couldn 't match type `Char ' with `[Char]'

19 Expected type: [Char] -> [Char]

20 Actual type: [Char] -> Char

4We know that functions really only take a single parameter at a time. But it would save us some time and e�ort to think of
them as taking several parameters.
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21 In the first argument of `f2', namely `head '

22 In the expression: f2 head "abcd"

We now understand better how f2 works and we know why the function we pass has to have the type
(a -> a). If our function takes an Int and returns a Bool, there's no way we can call it again on the
resulting Bool � it's the wrong type.

While we can call head twice on something like [[2,3],[4,5]] (it returns 2), using f2 will give an error.
Moreover, there's no easy way to modify it so it can work.5 We'll discuss this in [XREF], as well as provide
an adequate solution.

Very few functions take a single parameter and return something of the same type. We can, however, partially
apply functions to the point of accepting only one parameter, and then pass them to f2. It's obvious how
useful partial application becomes in this case.

1 ghci > f2 (+ 2) 9

2 13

3 ghci > f2 (* 5) 4

4 100

5 ghci > f2 (^2) 3

6 81

7 ghci > f2 ("a" ++) "b"

8 "aab"

9 ghci > f2 (++ "a") "b"

10 "baa"

11 ghci > f2 ('a':) "b"

12 "aab"

So let's recap what's going on here, because it's important. f2 looks like this:

1 f2 :: (a -> a) -> a -> a

2 f2 f x = f (f x)

Basically it applies the function f (of type a -> a) to x (a value of type a) twice. We can create a function
to apply it three times, or even four:

1 f3 :: (a -> a) -> a -> a

2 f3 f x = f (f (f x))

3
4 f4 :: (a -> a) -> a -> a

5 f4 f x = f (f (f (f x)))

The type remains the same because we still have only two parameters: the function and the value to apply
it to.

6.2.2. Flipping the Parameters

Sometimes we want to call a function with the parameters in another order. For instance, maybe we want
to call our drink calculator (4.2.2, reproduced here for our convenience) in the order n sex.

1 drink :: (Fractional a, Ord a) => String -> a -> String

2 drink sex n

3 | bac < 0.03 = "You 're as sober as can be expected."

4 | bac < 0.08 = "You can drive , but it's a bad idea."

5The problem is that [[2,3]],[4,5]] is a list of lists, but calling head on it returns a list (namely, [2,3]), which has a
di�erent type.
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5 | bac < 0.10 = "Your reasoning is out the window."

6 | otherwise = "Stop drinking."

7 where bac = n * if sex == "male" then 0.025 else 0.035

We can de�ne an additional function like below, but since we're talking about higher-order functions, there
is another way.

1 flipDrink :: (Fractional a, Ord a) => a -> String -> String

2 flipDrink n sex = drink sex n

In this case, we shall use flip. flip is a nice built-in function that reverses the parameters of a two-parameter
function. We can de�ne our own version of it6:

1 flip ' :: (a -> b -> c) -> b -> a -> c

2 flip ' f y x = f x y

The reasoning is pretty intuitive but can still be confusing: we want to feed the parameters in reverse order,
but the function will only accept them in the right one. So we give the parameters in the wrong order (what
we want) and flip' will call them in the right order (what the compiler wants), just like flipDrink above.
Some examples:

1 ghci > drink "female" 2

2 "You can drive , but it's a bad idea."

3 ghci > flip ' drink 2 "female"

4 "You can drive , but it's a bad idea."

5 ghci > (-) 3 2

6 1

7 ghci > flip ' (-) 2 3

8 1

9 ghci > (++) "hello" "world"

10 "helloworld"

11 ghci > flip ' (++) "hello" "world"

12 "worldhello"

13 ghci > zip [1,2,3] [4,5,6]

14 [(1,4) ,(2,5) ,(3,6)]

15 ghci > flip ' zip [1,2,3] [4,5,6]

16 [(4,1) ,(5,2) ,(6,3)]

17 ghci > flip ' (zip [1,2,3] [4,5,6]) -- nope , error

What happens if we partially apply flip'? If we only give it the function, we get that function with its
parameters reversed.

1 ghci > :t zip

2 zip :: [a] -> [b] -> [(a, b)]

3 ghci > :t flip ' zip

4 flip ' zip :: [b] -> [a] -> [(a, b)]

5 ghci > let oddDivision = flip (/)

6 ghci > 2 `oddDivision ` 3

7 1.5

If we give it a function and a parameter, we've essentially partially applied that function on its second
parameter:

6Quick reminder: despite what the syntax highlighter may imply [FIXME-I'm working on it, but it seems to be a particularly
thorny problem], the quote doesn't do anything. It's just another character in the function name so that flip' won't overlap
with the prede�ned flip.
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1 ghci > let compare2With = compare 2

2 ghci > let compareWith2 = flip compare 2

3 ghci > compareWith2 3

4 GT

5 ghci > compare2With 3

6 LT

6.3. More Useful Functions

6.3.1. map and zipWith

Another cool (and useful) thing we can do is apply a function to every element in a list using map. Like
before, we can have our own map, which we'll call map'.

1 map ' :: (a -> b) -> [a] -> [b]

2 map ' _ [] = []

3 map ' f (x:xs) = f x : map ' f xs

This is the �rst time we use higher order functions and recursion simultaneously. First, as always, the type
declaration: map' takes a function (that takes something of type a and returns something of type b) and a
list of somethings of type a and returns a list of somethings of type b.7

Recall how we learned them during the recursion chapter. The second line is the base case: mapping a
function (any function, thus the _) over the empty list is the empty list.

The third line: mapping a function f over a list with the �rst element x and the rest of the elements xs is a
list with the �rst element f x and the rest of the elements obtained by mapping f over xs. In other words,
we apply the function element by element, starting with the �rst one. Example:

1 ghci > map ' succ [6,9,3]

2 [7,10,4]

1. map' succ [6,9,3] is succ 6 : map' succ [9,3], which is 7 : map' succ [9,3]

2. map' succ [9,3] is succ 9 : map' succ [3], which is 10 : map' succ [3]

3. map' succ [3] is succ 3 : map' succ [], which is 4 : map' succ []

4. map' succ [] is [], so map' succ [6,9,3] is 7 : 10 : 4 : [], which is [7,10,4]

We're gonna assume that we've gained a su�cient understanding of recursion such that elaborations like the
one above aren't necessary from now on.

[FIXME] NOTE: if I haven't explained things well enough and by this point you do not fully understand
recursion, especially with higher-order functions, shoot me an e-mail at questions@sthaskell.com telling me
where you got lost so I know where to improve. I'd really appreciate it. Thanks!

Some more examples with map', also highlighting some more partial application uses.

1 ghci > map ' pred [6,9,3]

2 [5,8,2]

3 ghci > map ' sqrt [4,9,16]

4 [2.0 ,3.0 ,4.0]

5 ghci > map ' (+2) [10 ,20 ,30 ,40]

6 [12 ,22 ,32 ,42]

7Shorter explanation: map' takes a function (that takes an a and returns a b) and a list of as and returns a list of bs.
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7 ghci > map ' (==5) [2,5,3,5]

8 [False ,True ,False ,True]

9 ghci > map ' (4/) [4,2,1,0.5]

10 [1.0 ,2.0 ,4.0 ,8.0]

11 ghci > map ' (++"aa") ["bb", "cc"]

12 ["bbaa","ccaa"]

13 ghci > map ' ('x':) ["b", "a", "r"]

14 ["xb","xa","xr"]

Another function, zipWith, is just like map, but it operates on two lists and takes a two-parameter function.
Our own version might look something like this:

1 zipWith ' :: (a -> b -> c) -> [a] -> [b] -> [c]

2 zipWith ' _ [] _ = []

3 zipWith ' _ _ [] = []

4 zipWith ' f (x:xs) (y:ys) = f x y : zipWith ' f xs ys

Again, notice how extremely similar to map it is. So, zipWith applies a two-parameter function to the
elements of two lists, returning a third list with the results. It �nishes when one of the lists is empty.
Examples:

1 ghci > zipWith ' (+) [2,3,4] [5,6,7]

2 [7,9,11]

3 ghci > zipWith ' (++) ["hello ","bye "] ["world","everyone"]

4 ["hello world","bye everyone"]

5 ghci > zipWith ' (*) [1..6] [2 ,2..]

6 [2,4,6,8,10,12]

7 ghci > zipWith ' compare [5,6,7] [3,10,7]

8 [GT,LT,EQ]

9 ghci > zipWith ' (&&) [True ,True] [True ,False]

10 [True ,False]

11 ghci > zipWith ' (++) ["aa", "bb"] ["xx", "yy"]

12 ["aaxx","bbyy"]

Now we see another useful application of flip8. Not necessarily the following example, but the fact that we
can pass a function with its parameters in another order.

1 ghci > zipWith ' (flip (++)) ["aa", "bb"] ["xx", "yy"]

2 ["xxaa","yybb"]

3 ghci > flip (zipWith ' (++)) ["aa", "bb"] ["xx", "yy"]

4 ["xxaa","yybb"]

It's interesting how both methods work. The �rst one passes a function with its parameters reversed. The
second �ips the lists around. The end result is the same, but we usually use the �rst one as it's more readable.

Remember the zip function back in 5.1.3? It turns out it's a speci�c case of zipWith, namely zipWith (,)9.

1 ghci > zip [1,2,3] "abc"

2 [(1,'a') ,(2,'b') ,(3,'c')]

3 ghci > zipWith (,) [1,2,3] "abc"

4 [(1,'a') ,(2,'b') ,(3,'c')]

Additionally, we can continue with the map and zipWith idea and provide something that works on three
lists. There actually is such a function, zipWith3. It looks like this:

8No pun intended.
9We've met (,) in 3.3.3, when discussing tuples.
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1 zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]

2 zipWith3 _ [] _ _ = []

3 zipWith3 _ _ [] _ = []

4 zipWith3 _ _ _ [] = []

5 zipWith3 f (x:xs) (y:ys) (z:zs) = f x y z : zipWith3 f xs ys zs

It's fairly easy to create such functions for 4, 5 or even more lists, but extremely di�cult to make one to
work for an arbitrary number of them. We'll look into this much later on, in [XREF].

6.3.2. Working with Predicates

A predicate is a function that takes a single parameter and returns a boolean (it essentially tells us if
something is true). For instance, null, (>3), even, (==2), or, elem 'a', and isInfinite are all predicates
(notice how some of them are partially applied functions). They can be used as such, like below, or can be
passed to a higher-order function.

1 ghci > null [2,3]

2 False

3 ghci > (>3) 6

4 True

5 ghci > even 5

6 False

7 ghci > (==2) 2

8 True

9 ghci > or [True , True , False]

10 True

11 ghci > (elem 'a') "hello world"

12 False

13 ghci > isInfinite (1/0)

14 True

Using them as parameters for other functions can be extremely useful, but �rst we need to know a couple of
functions that accept predicates. filter is one of them � it takes a predicate and a list and returns a list
containing only the elements that satisfy the predicate.

1 filter :: (a -> Bool) -> [a] -> [a]

2 filter _ [] = []

3 filter p (x:xs) = if p x then x : filter p xs

4 else filter p xs

We immediately notice the predicate: it's the �rst parameter, of type a -> Bool. The function traverses the
list, element by element, keeping those that satisfy the predicate p10 and excluding those that don't (if p x

then include else exclude).

1 ghci > filter even [5,4,2,1,3,6,8,2]

2 [4,2,6,8,2]

3 ghci > filter (>3) [4,3,2,1,5,0]

4 [4,5]

5 ghci > filter (/= 5) [4,5,6,7]

6 [4,6,7]

7 ghci > filter (elem 'a') ["hello", "abstract", "gemini"]

8 ["abstract"]

10While we call our functions f, g and so on, we usually name predicates p and q.
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9 ghci > filter null [[5 ,6] ,[7] ,[] ,[8 ,9] ,[]]

10 [[] ,[]]

Even better, we can incorporate filter into bigger functions that do useful things � like quicksort.

1 quicksort :: Ord a => [a] -> [a]

2 quicksort [] = []

3 quicksort (x:xs) = lesserSorted ++ [x] ++ greaterSorted

4 where lesserSorted = quicksort (filter (<= x) xs)

5 greaterSorted = quicksort (filter (> x) xs)

We've recycled the example from 5.3.2, but instead of using list comprehensions, we used �lters. In fact,
more of the stu� we've discussed so far (like map) have a list comprehension equivalent. We'll talk more
about this in 6.3.3.

Before we discuss applications, let's look at two functions which are very similar to filter: takeWhile and
dropWhile.

� takeWhile takes a predicate and a list. Like filter, it takes elements which satisfy the predicate.
Unlike filter, it stops entirely when it encounters an element that doesn't satisfy.

� dropWhile is similar to takeWhile � but it returns the rest of the list, starting with the �rst element
that doesn't satisfy.

1 ghci > filter (>3) [4,6,2,1,8,7]

2 [4,6,8,7]

3 ghci > takeWhile (>3) [4,6,2,1,8,7]

4 [4,6]

5 ghci > dropWhile (>3) [4,6,2,1,8,7]

6 [2,1,8,7]

7 ghci > filter (/= ' ') "hello dear world"

8 "hellodearworld"

9 ghci > takeWhile (/= ' ') "hello dear world"

10 "hello"

11 ghci > dropWhile (/= ' ') "hello dear world"

12 " dear world"

We'll let the source code speak for itself (this time we're using guards instead of explicit if..else, and we're
showing another indentation style11):

1 takeWhile :: (a -> Bool) -> [a] -> [a]

2 takeWhile _ [] = []

3 takeWhile p (x:xs)

4 | p x = x : takeWhile p xs

5 | otherwise = []

6
7 dropWhile :: (a -> Bool) -> [a] -> [a]

8 dropWhile _ [] = []

9 dropWhile p xs@(x:xs ')

10 | p x = dropWhile p xs'

11 | otherwise = xs

Recall the �as patterns� (4.1.4): name@pattern allows us to reference pattern by using name; in our case,
name is xs and pattern is (x:xs').

11These examples are identical to those in the o�cial source code. It's not a coincidence; that's where I took them from.
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6.3.3. Comparison with List Comprehensions

Some higher-order functions that operate on lists, namely map and filter, are equivalent to using list
comprehensions. We can even de�ne them this way:

1 map f xs = [f x | x <- xs]

2 filter p xs = [x | x <- xs, p x]

Should we use list comprehensions or higher-order functions? Usually we use the former when we have mul-
tiple operations to perform and the latter otherwise. For instance, [ 2*x | x <- xs, even x, x >= 2 ]

can be expressed by nesting maps and �lters, like map (2*) (filter even (filter (>=2) xs)), but is
extremely unreadable. Conversely, map (+2) xs is much more concise than [ x + 2 | x <- xs ].

One extremely cool thing that can be done with map is creating a list of functions � by passing a two- (or
more-) parameter function, such as *.

This means that the resulting list will contain partially applied functions: (5*), (4*) etc. We can extract
elements from it and fully apply them: [FIXME-elaborate on this]

1 ghci > let functions = map (*) [5,4,3,2,6]

2 ghci > :t functions

3 functions :: [Integer -> Integer]

4 ghci > (head functions) 8

5 40

We can totally do it with list comprehensions, as well:

1 ghci > let functions = [ (x*) | x <- [5,4,3,2,6] ]

2 ghci > (functions !! 4) 2

3 12

Psst! The !! function begins numbering at 0. So while 6 is the �fth element, we need to use !! 4. Performing
!! 5 will result in an index too large error.

takeWhile and dropWhile don't have an easy list comprehension equivalent, so we won't talk about them
here. Instead, we'll discuss the di�erence between the following:

� zipWith (+) [1,2,3] [10,20,30]

� [ x + y | x <- [1,2,3], y <- [10,20,30] ]

While zipWith combines corresponding elements of the list (1 with 10, 2 with 20 and 3 with 30), the list
comprehension matches all possible combinations (1 with 10, 1 with 20, 1 with 30, 2 with 10 and so on).

1 ghci > zipWith (+) [1,2,3] [10 ,20 ,30]

2 [11 ,22 ,33]

3 ghci > [ x + y | x <- [1,2,3], y <- [10 ,20 ,30] ]

4 [11 ,21 ,31 ,12 ,22 ,32 ,13 ,23 ,33]

It's a fundamental di�erence, but also one easily overlooked.

Warning! Do not confuse zipWith with similar list comprehensions.

6.3.4. Anonymous Functions (Lambdas)

We've already encountered some functions which needed to be used only once. Initially we separately de�ned
them. Afterwards, we de�ned them inside a let or a where. But what if our function is so trivial, that we'd
rather not name it at all? Introducing anonymous functions, or lambdas for short. What better way to show
them than to give a few examples?

65



6. Advanced Functions

1 -- Syntax: lambdas

2
3 \x -> x + 2

4
5 \xs -> length xs > 100

6
7 \x y z -> x + y + z

De�ning anonymous functions is similar to de�ning regular functions, but instead of the function's name we
use \12, and instead of = we write ->.

Additionally, by using lambdas, we not only specify the function, but we also �call� it. This is a really nice
timesaver, because we usually create anonymous functions to pass them to higher-order functions, where
they will be �called� anyway13. Compare the two:

1 ghci > let f x = 2*x + 3

2 ghci > f 5

3 13

4 ghci > (\x -> 2*x + 3) 5

5 13

Notice how we put the lambda in parentheses. Without parentheses, lambdas extend all the way to the right.

Let's see some lambdas in use. They are, technically speaking, expressions, so we can �t them anywhere
(where a function is needed):

1 ghci > map (\x -> 2*x + 3) [1..5]

2 [5,7,9,11,13]

3 ghci > filter (\x -> x^2 > 16) [10,20,5,4,1,6]

4 [10,20,5,6]

5 ghci > zipWith (\x y -> x + 2*y) [1,2,3] [4,5,6]

6 [9,12,15]

Don't become overzealous with lambdas, though. We might be tempted to use them when it's not necessary:

1 ghci > map (\x -> x + 2) [1,2,3]

2 [3,4,5]

3 ghci > map (\x -> sqrt x) [4,9,25]

4 [2.0 ,3.0 ,5.0]

Here, we're better o� using the functions directly:

1 ghci > map (+2) [1,2,3]

2 [3,4,5]

3 ghci > map sqrt [4,9,25]

4 [2.0 ,3.0 ,5.0]

One great thing about anonymous functions is that, like regular (named) functions, we can use pattern
matching in them. Unlike regular functions, though, we have only one �body� so we can use only one
pattern. If that fails, crash!

1 ghci > map (\(x,y) -> compare x y) [(3,4), (5,6), (7,7), (9,8)]

2 [LT,LT,EQ,GT]

3 ghci > map (\(x:xs) -> (x,xs)) [[2,3,4], [8 ,10 ,20]]

12Because not everyone has λ on their keyboards (I do!).
13It's a cheesy explanation; we should look at the examples instead.
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4 [(2 ,[3 ,4]) ,(8,[10,20])]

5 ghci > map (\('a':xs) -> xs) ["animal", "anonymous"]

6 ["nimal","nonymous"]

7 ghci > map (\(3:xs) -> xs) [[4 ,5]]

8 [*** Exception: <interactive >:74:6 -18: Non -exhaustive patterns in lambda

One �nal cool thing before we �nish with lambdas: because of currying (and the fact that lambdas extend
all the way to the right if we don't put them in parentheses), the following two are equivalent:

� \x y -> x + y

� \x -> \y -> x + y

One additional consequence of currying is that we can also de�ne functions using lambdas, but it's usually
not as readable. Notice how the parameters can be moved to the right, after the =:

1 f2 :: (a -> a) -> a -> a

2 f2 f x = f (f x)

3
4 g2 :: (a -> a) -> a -> a

5 g2 f = \x -> f (f x)

6
7 h2 :: (a -> a) -> a -> a

8 h2 = \f x -> f (f x)

We won't focus as much on anonymous functions here because we'll use them extensively in the chapters
that follow.
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I see a lot of stu� with very clever maps and
folds... It's like functional spaghetti code.

(sproingie)

7.1. An Introduction to Folds

7.1.1. Eating a List

Remember the discussion in 5.3.3 about common patterns in recursion? Here are the examples again:

1 sum [] = 0

2 sum (x:xs) = x + sum xs

3
4 product [] = 1

5 product (x:xs) = x * product xs

6
7 and [] = True

8 and (x:xs) = x && and xs

9
10 or [] = False

11 or (x:xs) = x || or xs

The common pattern is:

1 listFunction [] = startingValue

2 listFunction (x:xs) = x `baseFunction ` listFunction xs

Or, if we don't call it in�x1:

1 listFunction [] = startingValue

2 listFunction (x:xs) = baseFunction x (listFunction xs)

Seeing how often we use something like this, it's natural to make a function that covers all possible use
cases. As we've discussed earlier, creating a more abstract, general function that can be reused in many
di�erent ways is at the heart of Haskell. Such a thing, however, would be impossible without knowing about
higher-order functions (which we now do).

Let's think about what we'll need. We obviously would want to have our base function, but also provide the
starting value and a list on which to perform the operations. Here they are:

1. baseFunction, which takes two parameters and returns a third. This could be any of the following: +,
*, && etc.

2. startingValue, which can be 0, 1, True or any other value

3. xs, the list on which to perform the operations.

1Refresher: A pre�x function comes before its parameters: f x y. An in�x function is between them: x `f` y. The notations
are equivalent. Notice the backquotes.
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Let's call our function eat2, because it kinda looks like we're eating the list element by element.

First of all let's think about the type de�nition. It takes baseFunction (which can be something like
a -> b -> c), a starting value (let's say d to keep it general), a list of some type [e], and �nally, it returns
something, let's say of type f. It would look something like eat :: (a -> b -> c) -> d -> [e] -> f.

But there's something wrong with our type de�nition. If our list is of type [e], then we need the base
function to call elements of that type as well, or it won't work on our list. It should look more like
eat :: (e -> e -> e) -> e -> [e] -> e. This one, though, looks a bit too speci�c. We want our func-
tions to be as general as possible and certainly a function that only takes values of the same type can be
improved3.

Let's skip this one for the moment and move on to actually de�ning the function. Let's call someFunction
f and startingValue z4 because it's shorter and easier to follow. The edge condition should be pretty easy
� eating an empty list should give us the starting value5. Let's write this down.

1 eat _ z [] = z

Notice how there's an underscore in there. That actually represents the base function f, but since we don't
need it here, we write _.

Next up, doing the actual function. First of all, we'll separate the list into a head and a tail, because that's
what all the functions above have done. Our function is an abstraction of those, so it should behave the
same.

1 eat _ z [] = z

2 eat f z (x:xs) =

Similarly, f should be called with the head of the list, x, and something else.

1 eat _ z [] = z

2 eat f z (x:xs) = f x

Now, what is f's second parameter? The whole thing should be recursive, so the logical choice would be to
call eat with xs. This way we'll be sure to follow the example of sum, product etc. above. We shouldn't
forget the parentheses to group eat xs.

1 eat _ z [] = z

2 eat f z (x:xs) = f x (eat xs)

Wait! We forgot to carry the other parameters that eat needs: the base function f, the starting value z

(which will be used when eat �nally reaches the empty list), and obviously the tail of the list, xs. Those
weren't needed for sum or product but we need them now. There:

1 eat _ z [] = z

2 eat f z (x:xs) = f x (eat f z xs)

Let's put it in a �le (say, eat.hs) and load it.

1 ghci > :l eat.hs

2 [1 of 1] Compiling Main ( eat.hs, interpreted )

3 Ok, modules loaded: Main.

2A better idea might have been traverse, but there's already a function with that name, and it does something entirely
di�erent (see [XREF]).

3In most cases, anyway.
4We could be tempted to call it x0, but someone skimming over the function might get confused and think that x (which we'll
use for the elements of the list) and x0 have the same type because they're named similarly. We don't know if that's the
case!

5If we call productwith [] it returns 1, sum [] = 0, and [] = True etc.
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It compiled! Now for the thing that we skipped earlier: the type.

1 ghci > :t eat

2 eat :: (t -> t1 -> t1) -> t1 -> [t] -> t1

It seems that our eat :: (a -> b -> c) -> d -> [e] -> f guess was indeed too broad, and our next
best guess, (e -> e -> e) -> e -> [e] -> e was too speci�c. But we were close! Let's write the type
declaration (using a and b instead of the ugly t and t1), align things a little and marvel at our handiwork:

1 -- File: eat.hs

2 eat :: (a -> b -> b) -> b -> [a] -> b

3 eat _ z [] = z

4 eat f z (x:xs) = f x (eat f z xs)

Now let's go ahead and try to de�ne sum in terms of eat. Our function is addition, +. The starting value is
0 (because 0 doesn't in�uence addition, i.e. 0 + anything gives that thing back). Let's go!

1 sum ' xs = eat (+) 0 xs

The xs is redundant6, so we can remove it.

1 sum ' = eat (+) 0

We can try it out (sum' uses eat so we should be sure that eat is de�ned in the same �le7!) and see if it
works properly.

1 ghci > sum ' [1,2,3,4,5]

2 15

3 ghci > sum ' []

4 0

Excellent! We can go ahead and de�ne the other functions in here just as easily. Notice how, every time
we choose a starting value, we try to start with something that doesn't in�uence the result: 1 * anything,
True && anything and so on. They all give that thing back8.

1 product ' = eat (*) 1

2 and ' = eat (&&) True

3 or' = eat (||) False

Let's test them as well.

1 ghci > product ' [4,5,6]

2 120

3 ghci > product ' [0]

4 0

5 ghci > and ' [True , True , False]

6 False

7 ghci > or' [False , True , False]

8 True

This eat function is really useful. How come it's not prede�ned? Let's do a Hoogle search for its type and
see if there's a similar function included with Haskell.

Whoops! It found something: foldr. It looks like we've just reinvented the wheel. It has the same type, it
appears to do the same thing, and it might just be the same function! Let's check it out.

6It's because of the fundamentals of currying and partial application that we've discussed earlier in 6.1.1)
7Quick note: Haskell can include a �le in another �le so we can have two interdependent functions in di�erent �les. We'll learn
how when we do modules, in [XREF].

8Mathematically, they're called identity elements. Wikipedia has a neat list of examples for lots of functions.
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1 ghci > let sum ' = foldr (+) 0

2 ghci > sum ' [1,2,3,4,5]

3 15

So this function has already been implemented. This is both a blessing and a curse with Haskell � on
one hand, a lot of the things that we might need in a program are already there, ready to be used. But
on the other hand, when writing a larger program, we're bound to code a function that has already been
implemented more e�ciently.

Actually, foldr is a great example of this. The way we've written eat is the �academic� way � the function
is easy to understand, concise and it's the proper mathematical de�nition. The o�cial de�nition of foldr
is longer and harder to understand � but it's more e�cient.

As an o�-topic note, we're gonna have to be careful when we write our code in Haskell: we want something
short and easy to understand, but we also want something that doesn't take 100 years to run. It's like this9:

1 --- BEAUTIFUL <------------------> <------------------> EFFICIENT ---

2 * easy to understand WHAT runs faster *

3 * concise , elegant , fun WE uses less memory *

4 * harder to make mistakes WANT good for large programs *

7.1.2. Introducing Folds Proper

Now that we've played around with eat, which turned out to be our own implementation of foldr, it's time
to learn properly about folds and how they are truly useful. We should note that foldr (right fold) is one
of the two big types of folds out there, the other one being foldl (left fold). We'll stick with foldr for the
time being.

Let's pull up our de�nition of foldr again and mention some of the terms people use when referring to folds.

1 foldr :: (a -> b -> b) -> b -> [a] -> b

2 foldr _ z [] = z

3 foldr f z (x:xs) = f x (foldr f z xs)

� foldr is called a �right fold�. It's counterintuitive, but foldr actually eats the list from the right. We'll
get back to this really soon, in [XREF].

� f is called the �accumulating function�, the �combining function� or just �the function�.

� z is called the �accumulator�. It's the value that gets built up (�accumulated�) and eventually returned
by the fold.

� (x:xs) is the �list�. It's the thing that gets �folded� by foldr.

With terminology out of the way, now it's time to discuss one of the most important things we need to
understand in order to best use foldr: how the accumulator gets built up and retuned.

A quick way to try and understand folds is by looking at what happens with a simple example:

1 ghci > foldr (+) 0 [1,2]

2 3

1. foldr (+) 0 [1,2] is 1 + (foldr (+) 0 [2])

2. foldr (+) 0 [2] is 2 + (foldr (+) 0 []), so foldr (+) 0 [1,2] is 1 + (2 + (foldr (+) 0 []))

9I strongly believe that a Haskell program should in some manner be beautiful and concise. That's why we use it. If we want
to write the most e�cient program out there, we're probably gonna use a di�erent language.
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3. foldr (+) 0 [] is 0, so foldr (+) 0 [1,2] is 1 + (2 + 0), which is 1 + 2, which is 3

We can see that foldr goes through the list beginning with the �rst element, but it puts all the operations
on hold10 until it processes the last element, getting to the empty list. When it gets to the empty list, it
returns the starting value of the accumulator (0). That value gets passed to the combining function (+)
along with the last element (2) which yields 2 + 0, which returns a new value for the accumulator, which
gets passed to the combining function along with the previous element, and so on.

More concisely, foldr calls the function (+) with the last element (2) and the starting value of the accu-
mulator (0), obtaining a new accumulator value. The function is now called with the second-to-last element
and the new accumulator value, yielding an even newer accumulator. The process gets repeated until foldr
has gone through the entire list. The �nal accumulator value is what gets returned by foldr.

Let's go through a more complicated example using our more concise method11:

1 ghci > foldr (/) 2 [5,6,3,4]

2 1.25

1. The initial accumulator value is 2. The function / gets applied to the last element, 4, and the accu-
mulator. 4/2 is 2, which is the new accumulator value12.

2. Now / gets applied to 3 (the second-to-last element) and 2, which is the current value of the accumu-
lator. 3/2 is 1.5, which is the new accumulator value.

3. 6/1.5 is 4, which is the new accumulator value.

4. 5/4 is 1.25. Because foldr has now gone through the entire list, 1.25 is what gets returned in the
end.

It's important to note that even though f is a two-parameter function, it does not operate on two elements
of the list. The combining function operates on a single element of the list at a time � the accumulator is
its other parameter. Let's look at a slightly di�erent example:

1 ghci > foldr (\x acc -> even x && acc) True [4,6,7,8]

2 False

Wow, that's a mouthful! Let's understand this piece of code by breaking it into chunks:

� foldr is there, so we should expect three parameters: a function, a value, and a list.

� \x acc -> even x && acc is the accumulating function. We'll mainly focus on this one, as it's the
function that does the magic.

� True is the starting value of the accumulator. It might get changed when it's passed around.

� [4,6,8,11] is the list that will get folded.

So what's up with \x acc -> even x && acc? This is an anonymous function, as we've discussed in 6.3.4.
It takes two parameters, x and acc13. This is a tricky one because x is an integer, but the accumulator is a
boolean.14 It's okay for the accumulator to have a di�erent type, as long as the combining function returns
something that has the same type as the accumulator.

Let's try the combining function with some arbitrary values, and then attempt to see what happens during
the fold.

10In 1 + (2 + ...)), 2 is inside a pair of parentheses, so Haskell can't do 1 + 2 yet.
11We don't usually use functions like division with folds, because there are di�erent types of folds, and division gives di�erent

results if we start from the left or from the right.
12If you come from a more traditional language like C or Python, remember that the �accumulator� is not a variable that

changes value. At every step, the function takes an accumulator and returns a new one.
13We usually call the accumulator acc for brevity and ease of understanding.
14We can deduce this in many di�erent ways: we can look at even x && acc to guess the types, plug the anonymous function

into GHCi with :t, or glance at True and [4,6,7,8], our intitial values which get passed into foldr.
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1 ghci > let f = (\x acc -> even x && acc)

2 ghci > f 2 True

3 True

4 ghci > f 2 False

5 False

6 ghci > f 3 True

7 False

8 ghci > f 3 False

9 False

1. foldr (\x acc -> even x && acc) True [4,6,7,8] has a starting accumulator of True

2. even 8 && True is True && True, which is True, our new accumulator.

3. even 7 && True is False && True, which is False.

4. even 6 && False is True && False, which is False.

5. even 4 && False is False, which is our �nal accumulator value � this is what foldr returns.

We can approach this in a more intuitive fashion as well � the && acc makes it such that once the accumu-
lator value becomes False, it will remain False. The accumulator value becomes False when it reaches an
odd element (even x would be false, and False && anything is False). The accumulator starts out True,
therefore we can intuitively guess that foldr will return False if there's at least one odd element in the list,
and True otherwise. This is much less e�ort but it's important to check our intuition!

1 ghci > foldr (\x acc -> even x && acc) True [2,4,6,8]

2 True

3 ghci > foldr (\x acc -> even x && acc) True [2,4,6,9]

4 False

Our intuition is, in fact, correct.

As long as we think logically about what happens during a folding operation, whether by expanding the
recursion and following the calculations (our �rst approach), by using the more concise method of following
the accumulator through the list from the last element to the �rst (our second approach) or by simply thinking
about it intuitively (our third approach), we won't have any surprises when we do more complicated things
with folds.

The more we go through folds and use them, the less we'll need to use the step-by-step approach and the
more natural folding will seem to us.

7.1.3. When You Should Fold

Now that we know what folds do and how they work, our next logical question is when we should use them.
The answer is natural: we should use them when they �t, namely when we need something to go through a
list, element by element, and return a result. We've already seen addition, multiplication, and so on. Let's
think of other use cases.

Suppose we have a list of positive numbers, and we're asked to �nd out the maximum of these values. To
do that, we go through the list and compare each element with the current accumulator, keeping the larger
one. After we go through the entire list, we should get the maximum value. Let's get going!

First of all, we need a function that takes the maximum of two things: our element, and the accumulator.

1 ghci > max 5 7

2 7

3 ghci > max 13.2 11

4 13.2
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Next, we need to pass it into foldr, along with our list and a starting value.

1 ghci > let myList = [5,7,10,2,3]

2 ghci > foldr max startingValue myList -- What should we put here?

We know that the list contains only positive numbers, so if we put 0 as the starting value, it shouldn't
in�uence the eventual result: all the numbers in the list are greater than 0.

1 ghci > foldr max 0 myList

2 10

As we did before, we can save this in a separate �le, and also write a type de�nition for it (Num is required
by 0 and Ord is required by the use of max):

1 -- File: maximum -positive.hs

2 maximumPositive :: (Num a, Ord a) => [a] -> a

3 maximumPositive = foldr max 0

We can also load this and test it out on more lists:

1 ghci > :l maximum -positive.hs

2 [1 of 1] Compiling Main ( maximum -positive.hs, interpreted )

3 Ok, modules loaded: Main.

4 ghci > maximumPositive [3, 6, 2]

5 6

6 ghci > maximumPositive [7.3, 6.5]

7 7.3

It works! We've deliberately avoided using negative numbers because our initial problems speci�es that all
numbers are positive. We'll return to this example shortly, trying out negative numbers as well, in [XREF].

Here's a more practical example. Imagine we have a list of bank accounts that contain the account holder's
name and their balance, something like ("Steve", 150.32). We need to see how many accounts in the
list have a negative balance. To do this, we need a function that takes an element and checks to see if the
balance is less than zero. If it is, we should return the accumulator plus one. This way, the accumulator will
end up being the number of accounts that are in the red.

Let's begin by working out the function that does the comparison. We're going to use an anonymous function.
It should look something like \x acc -> if <account is in red> then acc + 1 else acc. In this case,
the balance is stored in the second value of the tuple, so we can use snd x < 0 to check whether the balance
is negative. Our function is: \x acc -> if snd x < 0 then acc + 1 else acc. Let's try it out:

1 ghci > (\x acc -> if snd x < 0 then acc + 1 else acc) ("Mary", 140.3) 5

2 5

3 ghci > (\x acc -> if snd x < 0 then acc + 1 else acc) ("John", -120.5) 5

4 6

We see that it incremented the accumulator for John's balance, but not Mary's, which means we're on the
right track. Now all we need to do is actually pass this into foldr. We're starting the counting at 0.

1 ghci > let negAccts = foldr (\x acc -> if snd x < 0 then acc + 1 else acc) 0

2 ghci > negAccts [("Steve", 142.5) , ("Mary", -230.2), ("Sarah", 1500.0)]

3
4 <interactive >:31:21:

5 No instance for (Fractional Integer)

6 arising from the literal `142.5'

7 Possible fix: add an instance declaration for (Fractional Integer)
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8 In the expression: 142.5

9 In the expression: ("Steve", 142.5)

10 In the first argument of `negAccts ', namely

11 `[("Steve", 142.5) , ("Mary", - 230.2) , ("Sarah", 1500.0)]'

Whoa, what's going on? Let's read this error15: it seems that it's trying to turn an Integer into a Fractional
value because it encountered 142.5 when we called negAccts. In this case, it seems that our use of 0 is
problematic. When we created the function negAccts, Haskell automatically tried to infer its type (we didn't
provide an explicit type declaration). Because we used 0 instead of 0.0, it assumed we are talking about
Integers here, when we actually want to use any numbers that work, including Fractionals. This is only
one of the possible ways that Haskell can infer types incorrectly.

Fortunately, we can �x this in several di�erent ways. While we can replace 0 with 0.0 in snd x < 0 and
make the function work just �ne, or alternatively use integer values for the bank account balances, we should
do the �right� thing and place the function inside a �le, along with a type declaration:

1 -- File: neg -accts.hs

2 negAccts :: (Num a, Ord a) => [(String , a)] -> Int

3 negAccts = foldr (\x acc -> if snd x < 0 then acc + 1 else acc) 0

Now it works:

1 ghci > :l neg -accts.hs

2 [1 of 1] Compiling Main ( neg -accts.hs, interpreted )

3 Ok, modules loaded: Main.

4 ghci > negAccts [("Steve", 142.5) , ("Mary", -230.2), ("Sarah", 1500.0)]

5 1

Let's move on to another example. This is a bit di�erent from the other ones. In this scenario, we're trying
to determine if all the elements in a list are in ascending order. If our function is called isAscending, we'd
expect something like this:

1 ghci > isAscending ['a', 'b', 'd', 'f', 'm', 'q', 'r']

2 True

3 ghci > isAscending [6, 7, 4, 8, 9]

4 False

Our function doesn't seem to work that well with folds � checking if a list is ascending requires comparing
two elements with each other at every step, and folds only operate on one element at a time. It appears that
there's no easy way to write this in terms of folds.

Let's think of an implementation without folds �rst, in order to make sure that we didn't miss anything.
isAscending should take a list of comparable elements and return a boolean (True or False).

We'd ideally compare elements two by two. If the �rst one is larger than the second, then the list is not
ascending and we return False. Otherwise, we compare the next elements to see if they are ascending, and
so on until we reach the empty list or a list with only one element, which are ascending (so we'll return
True).

First things �rst: the type de�nition, and the base cases.

1 -- File: is-ascending.hs

2 isAscending :: (Ord a) => [a] -> Bool

3 isAscending [] = True

4 isAscending [_] = True

5 -- to be continued ...

15A super detailed description on how to read errors is in B.2.1.
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So far, so good. Now we need to separate the list into the �rst two elements and the rest of the list, and
tackle the case when they are not in ascending order (the easier one). If the �rst two elements are in order,
we need to check if the rest of the list is ascending as well:

1 -- File: is-ascending.hs

2 isAscending :: (Ord a) => [a] -> Bool

3 isAscending [] = True

4 isAscending [_] = True

5 isAscending x:y:ys

6 | x > y = False

7 | otherwise = isAscending ys

It looks �nished! Let's try it out:

1 ghci > :l is-ascending.hs

2 [1 of 1] Compiling Main ( is-ascending.hs, interpreted )

3 Ok, modules loaded: Main.

4 ghci > isAscending [1,2,3,4,5]

5 True

6 ghci > isAscending [2,1,3,4,5]

7 False

8 ghci > isAscending [1,3,2,4,5]

9 True

Wait, something's wrong. Why does it return True for the third one? If we look back at the code, we see
that it compares the �rst two elements, which is good. But then it jumps straight to comparing the third
and the fourth, without checking if the second and the third are in order.

In other words, our function only checks every other comparison. In the otherwise guard, we need to have
isAscending (y:ys) instead of isAscending ys. This way it won't skip any comparisons.

1 -- File: is-ascending.hs

2 isAscending :: (Ord a) => [a] -> Bool

3 isAscending [] = True

4 isAscending [_] = True

5 isAscending (x:y:ys)

6 | x > y = False

7 | otherwise = isAscending (y:ys)

It's good we caught that mistake early! If we only stopped at the �rst two tests, we probably wouldn't have
noticed it as quickly. Therefore, it is important to perform lots of tests on our code, especially if it's part of
a large program.

1 ghci > :r -- Reload the loaded files

2 Ok, modules loaded: Main.

3 ghci > isAscending [1,3,2,4,5]

4 False

5 ghci > isAscending ['a','b','c']

6 True

Now let's go back and try to implement this as a fold. Looking at the de�nition of foldr below, it becomes
increasingly clear that isAscending doesn't follow the same pattern.

1 foldr :: (a -> b -> b) -> b -> [a] -> b

2 foldr _ z [] = z

3 foldr f z (x:xs) = f x (foldr f z xs)
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� isAscending operates on two elements at once, whereas foldr goes element by element.

� isAscending has two base cases, whereas foldr has only one.

� isAscending contains a guard in one of the cases, whereas foldr just recurses directly, without any
conditionals.

For all these reasons, there's no straightforward way to implement isAscending by using foldr.16 It's okay,
though. Sometimes even something as �exible as foldr isn't particularly suited to a certain problem. As
we progress through the book, we'll have a wider toolset to deal with speci�c tasks, but we'll still return to
basics such as recursion every once in a while � in Haskell, the basics are very powerful.

7.2. Di�erent types of folds

7.2.1. foldl vs foldr

We've talked at length about foldr and the way it works. The other major type of fold is the left fold. In
the case of left folds, the list gets eaten up from the left. Let's compare foldl and foldr's de�nitions17:

1 foldr :: (a -> b -> b) -> b -> [a] -> b

2 foldr _ z [] = z

3 foldr f z (x:xs) = f x (foldr f z xs)

4
5 foldl :: (b -> a -> b) -> b -> [a] -> b

6 foldl _ z [] = z

7 foldl f z (x:xs) = foldl f (f z x) xs

Here, foldr applies the combining function to the �rst element and the accumulator resulted from folding
the rest of the list. By contrast, foldl immediately applies the combining function with the �rst element
and the initial accumulator and then it recurses into folding the rest of the list.

The di�erence is subtle, but very important: foldr goes through the list stacking up operations [FIXME-
double triple check if this is correct], and when it reaches the end18 it starts processing them beginning with
the last one (essentially from right to left), whereas foldl goes through the list queuing up operations, and
when it reaches the end it starts processing them beginning with the �rst one (essentially from left to right).

Let's work on a few simple examples before we discuss the details of how foldl and foldr work, and when
to use each one.

Because of how foldl and foldr are de�ned (and by looking at the type declaration), we can see that the
combining function has its arguments �ipped in the case of foldl. This is usually not a problem, as a lot of
the functions that we use are commutative (1 + 2 is the same as 2 + 1):

1 ghci > foldr (+) 0 [1..5]

2 15

3 ghci > foldl (+) 0 [1..5]

4 15

5 ghci > foldr (&&) True [True , True , False]

6 False

7 ghci > foldl (&&) True [True , True , False]

8 False

16If we employ particularly ugly hacks, such as making the accumulator store two values in a tuple, and using conditionals to
replicate the behavior of the guards in isAscending, we might just make it work. We'll see in [XREF] how this is possible
and why it's a bad idea.

17In GHC, foldl is actually implemented in a di�erent way, for e�ciency. Our de�nition is equivalent � we're using it to
illustrate the di�erence between foldl and foldr.

18Not quite � thanks to laziness, foldr won't go through the entire list if it doesn't need to. We'll go back to this shortly.
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Let's recycle one of our previous examples:

1 ghci > foldr (\x acc -> even x && acc) True [2,4,6,9]

2 False

We need to �ip the arguments in order to make it work with foldl:

1 ghci > foldl (\acc x -> even x && acc) True [2,4,6,9]

2 False

[FIXME]
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A. Miscellaneous

A.1. Functions

A.1.1. Fixity

The following table1 shows the precedence and �xity (left-, non-, and right- associativity) of the operators
in Prelude.

Precedence Left-associative Non-associative Right-associative

9 !! .

8 ^, ^^, **

7
*, /, `div`, `mod`, `rem`,

`quot`

6 +, -

5 :, ++

4
==, /=, <, <=, >, >=,
`elem`, `notElem`

3 &&

2 ||

1 >�>, >�>=

0 $, $!, `seq`

Below are some examples of precedence and �xity declarations (if an operator de�nition lacks a �xity decla-
ration it is assumed to be infixl 9).

1 -- File: fixity.hs

2 x ++++ y = x + y + x*y

3 infixl 3 ++++ -- left -associative

4
5 x -.- y = x^3 + y^3

6 infixr 5 -.- -- right -associative

7
8 func a b = a + b + b

9 infix 2 `func ` -- non -associative

In many cases the correct �xity declaration carries a great deal of importance � let's take -.- (the one
declared above) as an example.

1 ghci > (3 -.- 4) -.- 5

2 753696

3 ghci > 3 -.- (4 -.- 5)

4 6751296

So, even though -.- is right-associative in Haskell-speak, it is non-associative in the mathematical sense:
(a -.- b) -.- c is not the same as a -.- (b -.- c).

1Taken from the Haskell 98 Report
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A.1.2. Laziness Explained

Haskell has a very strange property when compared to your �usual� programming languages: it's lazy.
This means that the compiler or interpreter will evaluate an expression only when it's needed. It's very
tricky on many levels, mainly because laziness introduces important di�erences between super�cially similar
expressions. Let's take the simplest function imaginable and move on from there: &&. As a reminder, && is
de�ned like so:

1 (&&) :: Bool -> Bool -> Bool

2 True && x = x

3 False && _ = False

Note how && won't even evaluate its second argument if the �rst is False: && is strict in the �rst argument,
but lazy in the second. In other words, && must always evaluate the �rst argument, but not necessarily the
second one.

We have a better perspective when we look at expressions in light of thunks. Thunks are unevaluated values
(with �instructions� on how to evaluate them)2. Let's take the following piece of code as an example:

1 -- File: thunks.hs

2
3 a = (length "hello", [1, 2, 3, 4])

4 (b, c) = a

5 1:d = c

Line-by-line:

1. Haskell matches (length "hello", [1, 2, 3, 4]) to a. Because we do nothing to a, Haskell doesn't
care what it is. It doesn't actually evaluate it, so a is just a thunk.

2. a will need to be matched to a pair. In order to make sure the match succeeds and to assign the
necessary variables, a is evaluated to something like (thunk, thunk). b and c become thunks.

3. c, previously a thunk, is now evaluated to make sure it conforms to 1:d. c now �becomes� 1:thunk.

Let's take another example: Let's try to fully evaluate ("hi", [4, 5])3. The steps are as follows:

1 -- Evaluation steps

2 thunk -- unevaluated

3 (thunk , thunk)

4 ('h':thunk , thunk)

5 ('h':'i':thunk , thunk)

6 ('h':'i':[], thunk)

7 ('h':'i':[], 4:thunk)

8 ('h':'i':[], 4:5: thunk)

9 ('h':'i':[], 4:5:[])

Partially evaluated values are in something called weak head normal form. Fully evaluated things are in
normal form.

We don't always know which functions are strict and which are lazy, but we can check by calling them with
undefined. If undefined is not evaluated (i.e. remains a thunk), nothing happens. If it is, it throws an
error.

1 ghci > False && undefined

2 False

2In fact, if Haskell weren't lazy, there would be no such thing as a thunk: all expressions and values would always be fully
evaluated.

3For example, by printing it � printing �forces� evaluation.
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3 ghci > undefined && False

4 *** Exception: Prelude.undefined

This is our con�rmation of the above: && is indeed lazy in the second argument, but strict in the �rst.

There are some catches however. For instance, we might expect 0 * x to not need to evaluate x. After all,
0 multiplied by anything is 04. So we can put undefined, can't we?

1 ghci > 0 * undefined

2 *** Exception: Prelude.undefined

Surprise surprise! It seems that multiplication is strict in both parameters, even when supplied 0.

What isn't surprising is that laziness is a touchy subject � the best way to learn it is through experience.

A.2. Constants (A.K.A. �Variables�)

A.2.1. Local �Variables�

Let's look at the following example:

1 f x y

2 | g x y < 5 = "Less than 5"

3 | g x y == 5 = "Equal to 5"

4 | otherwise = "Greater than 5"

5 where g x y = 2*x + 3*y

The names (�variables�) x and y appear 5 times each. Let's count them:

1. f x y: the parameters in f's function de�nition

2. g x y < 5: the parameters used in a call to g.

3. g x y == 5: the same

4. g x y = ...: the parameters in g's function de�nition (before the =)

5. 2*x + 3*y: the parameters in g's body (after the =)

While we've used the same names in all 5 instances, they are logically di�erent. We can separate them as
follows:

� Pertaining to f: 1, 2, and 3

� Pertaining to g: 4 and 5

The names pertaining to f are logically di�erent than those pertaining to g � they seem to have the
same name (to us) but internally they are di�erent. In other languages, those pertaining to g would be
called �local variables� because they are logically di�erent and the di�erence occurs only in a limited area:
g x y = 2*x + 3*y.

We can re�ect the di�erence in meaning ourselves, by renaming them:

1 f x y

2 | g x y < 5 = "Less than 5"

3 | g x y == 5 = "Equal to 5"

4 | otherwise = "Greater than 5"

5 where g a b = 2*a + 3*b

4Not actually true: 0 · ∞ is unde�ned, and 0 · (−1) is �negative zero�, which is di�erent from �positive zero� in certain
programming contexts.
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There are more examples of �local variables�, even in the interactive prompt:

1 ghci > let x = 2; y = 3

2 ghci > let f x y = (x,y)

3 ghci > f x y

4 (2,3)

5 ghci > f 4 5

6 (4,5)

7 ghci > let x = 4; y = 5 in f x y

8 (4,5)

9 ghci > x

10 2

11 ghci > y

12 3

13 ghci > let x = 100; y = 200

14 ghci > f x y

15 (100 ,200)

What's going on here? As we know, in Haskell, no �variables� can change.

1. let x = 2; y = 3 de�nes the names x and y to be 2 and 3.

2. let f x y = (x,y) de�nes a two-parameter function that pairs the parameters (essentially, (,)).

3. f x y calls f with the parameters x and y, which are 2 and 3.

4. f 4 5 calls f with 4 and 5. Because the x and y from (x,y) are logically di�erent than those from
x = 2 and y = 3, the function behaves as expected.

5. let x = 4; y = 5 in f x y temporarily binds 4 and 5 to x and y respectively, then calls the function
with those values.

6. x and y have not changed outside the previous expression � they are still 2 and 3.

7. let x = 100; y = 200 binds the �new� values of 100 and 200 to the names x and y

8. f x y proves that the new values remain.

What happens is that when we call let in 2 and 7, we don't permanently change their values � if we exit
GHCi and enter it again, the de�ned values are gone.

What the let in 2 and 7 does is temporarily bind the values (2 and 3 and then 100 and 200) to x and y

until the end of the interactive session.

The let in 5 temporarily binds 4 and 5 to x and y until f x y is evaluated, after which it �reverts� to the
previous values.

What's going on here may be confusing, but hopefully it is somewhat intuitive. The point is that we're not
talking of the same x and y with di�erent values, we're talking about di�erent xs and ys. We can illustrate
that:

1 ghci > let x1 = 2; y1 = 3

2 ghci > let f x2 y2 = (x2,y2)

3 ghci > f x1 y1

4 (2,3)

5 ghci > f 4 5

6 (4,5)

7 ghci > let x3 = 4; y3 = 5 in f x3 y3

8 (4,5)

9 ghci > x1

10 2

11 ghci > y1
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12 3

13 ghci > let x4 = 100; y4 = 200

14 ghci > f x4 y4

15 (100 ,200)

We're going to get better at understanding the when and how of local �variables� as our experience increases.
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B.1. Typeclasses in Depth

Typeclasses are the bread and butter of Haskell1. Some of the most common (and useful) typeclasses, roughly
presented from general to speci�c, are:

B.1.1. Show and Read

These two typeclasses are, for the most part, invisible to the user. Although almost every type out there
belongs to both of them, Show and Read are handled by the computer2 � we only need to tell the compiler
�hey, that type is part of Show� and it does the rest.

� Show contains all types which can be converted to strings.

� Includes: almost all types (Int, [Bool], [[Char]] etc.)

� Does not include: functions (Int -> Int etc.)

� Prerequisites: none

� Built-in functions:

* show converts a value to a string

1 ghci > show 5

2 "5"

3 ghci > show 203

4 "203"

5 ghci > show False

6 "False"

7 ghci > show [1, 2, 5]

8 "[1,2,5]"

9 ghci > show ["hi", "hello", "blah"] -- result looks funky

10 "[\"hi\",\" hello \",\" blah \"]"

� Read is the converse of Show.

� Includes: almost everything that can also be shown.

� Does not include: functions

� Prerequisites: none

� Built-in functions:

* read converts a string to a speci�c value3.

1Author's note: in retrospect, I don't know what I meant by saying this.
2They can also, however, be manually speci�ed, but that's rare. The computer does a really good job.
3The type has to be speci�ed, either by performing an operation and letting Haskell infer, or by explicitly declaring it.
Otherwise, an ambiguous type variable error is thrown (details in B.2.2).
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1 ghci > read "True" && False

2 False

3 ghci > read "True" :: Bool

4 True

5 ghci > read "67" + 89

6 156

7 ghci > read "67" -- ambiguous type variable error

B.1.2. Eq, Ord, Enum

Many useful functions require membership in at least one of these typeclasses. After all, there is no function
that can order unsortable items, and you can't list that which cannot be enumerated.

� Eq contains all types that can be equated.

� Includes: almost all types

� Does not include: functions

� Prerequisites: none

� Built-in functions:

* == tests for equality

* /= tests for inequality

1 ghci > 5 == 6

2 False

3 ghci > "hello" == "hello"

4 True

5 ghci > (+) == (*) -- type error

� Ord contains types which have a logical ordering.

� Includes: almost all types

� Does not include: functions

� Prerequisites: Eq

� Built-in functions:

* > and >=

* < and <=

* compare returns an ordering

* max and min

1 ghci > 4 > 5

2 False

3 ghci > "abcd" >= "abcc"

4 True

5 ghci > True < False

6 False

7 ghci > max 10 3

8 10

9 ghci > compare 4 5
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10 LT

11 ghci > compare 4 4

12 EQ

13 ghci > compare 5 4

14 GT

� Enum contains types which can be enumerated.

� Includes: almost all types

� Does not include: functions, strings

� Prerequisites: Ord

� Built-in functions:

* succ returns the logical successor

* pred returns the logical predecessor

* Other functions synonymous to using ranges

1 ghci > succ 6

2 7

3 ghci > succ 'y'

4 'z'

5 ghci > succ 'z'

6 '{'

7 ghci > succ "abcde" -- type error

B.1.3. Numeric Typeclasses

All numbers have a common set of operations. They can, for example, be added or subtracted, even mul-
tiplied. There are grouped in many di�erent classes, however, because some of them lack speci�c behavior.
For instance, complex numbers4 cannot be ordered5.

� Num is the most general numeric typeclass.

� Includes: Int, Integer, Rational, Float, Double etc.

� Does not include: non-numbers

� Prerequisites: Eq, Show

� Built-in functions:

* +, -, and *

* negate returns the opposite of a number

* abs returns the absolute value

* signum is the sign function6

1 ghci > 5 + 4 * 3 - 2

2 15

3 ghci > negate 10

4The issue is multifaceted: complex numbers have the type RealFloat a => Complex a as opposed to other numbers (for
example, Fractional a => a).

5The previous footnote was about complex numbers, not their ordering. Just a clari�cation.
6Returns 1 on a positive number, 0 on zero, and -1 on a negative number.
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4 -10

5 ghci > abs (-5)

6 5

7 ghci > signum 23

8 1

9 ghci > signum (-23)

10 -1

� Integral is the typeclass of integers.

� Includes: Int, Integer and other size integers (Int8, Int16, Int32 etc.)

� Does not include: anything else

� Prerequisites: Num, Ord, Enum

� Built-in functions:

* quot, the quontient in division

* div, integer division

* rem, the remainder

* mod, modulo function

1 ghci > 17 `quot ` 3

2 5

3 ghci > 17 `div ` 3

4 5

5 ghci > 17 `rem ` 3

6 2

7 ghci > 17 `mod ` 3

8 2

9 ghci > 17 `quot ` (-3)

10 -5

11 ghci > 17 `div ` (-3)

12 -6

13 ghci > 17 `rem ` (-3)

14 2

15 ghci > 17 `mod ` (-3)

16 -1

Warning! Do not confuse quot with div and rem with mod � they behave di�erently on negatives.

� Fractional contains fractions, both common (14 ,
2
3) and decimal (2.5, 8.53)

� Includes: Rational, Float, Double etc.

� Does not include: integers, non-numbers

� Prerequisites: Num

� Built-in functions:

* /, the division function

* recip, the inverse of a number ( 1x , where x is the number)7

7recip 0 gives Infinity. However, Infinity is not a number per se, it's just a way to display ∞. If we really want to use ∞
in our calculations (which, by the way, is an extremely bad idea), we must use recip 0 or 1/0 or whatever.
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1 ghci > 5.2 / 3.2

2 1.625

3 ghci > recip 0.25

4 4.0

5 ghci > 1 / 0.25

6 4.0

7 ghci > recip 0

8 Infinity

9 ghci > 1 / Infinity -- doesn 't work

� Floating contains decimal numbers

� Includes: Float, Double etc.

� Does not include: common fractions, integers, non-numbers

� Prerequisites: Fractional

� Built-in functions:

* pi, a function of zero parameters (a constant)8

* exp, sqrt, log

* logBase, which takes two parameters

* **, the fractional power function

* sin, cos, tan and friends (sinh, acos, asinh etc.)

1 ghci > pi :: Float

2 3.1415927

3 ghci > pi :: Double

4 3.141592653589793

5 ghci > log 10

6 2.302585092994046

7 ghci > 5 ** 2.3

8 40.51641491731905

9 ghci > sin (pi / 3)

10 0.8660254037844386

11 ghci > cos (pi / 3)

12 0.5000000000000001

13 ghci > logBase 10 1000

14 2.9999999999999996

Warning! Watch out for rounding errors � they're a pain in the brain.

B.2. Type Errors

B.2.1. General Type Errors

We'll analyze the following type error in detail, line by line. Intimate knowledge of the structure of type
errors should help us �x them much faster.

8It's a very interesting case � because functions can be polymorphic and constants are (zero-parameter) functions, constants
can also be polymorphic.
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1 ghci > 1 * False

2
3 <interactive >:1:1:

4 No instance for (Num Bool)

5 arising from the literal `1'

6 Possible fix: add an instance declaration for (Num Bool)

7 In the first argument of `(*)', namely `1'

8 In the expression: 1 * False

9 In an equation for `it ': it = 1 * False

The analysis, as promised:

1. ghci> 1 * False is the (incorrect) expression we ran.

2. is a blank line. It doesn't really do anything.

3. <interactive>:1:1: is the location in the program that gives the error ([line]:[character]).

4. No instance for (Num Bool) means that False, which is a Bool, can't be a number (Num).

5. arising from the literal `1' tells us that it is through our use of 1, which is a number,
GHCi inferred that False must also be a number so it can multiply them. But False is a Bool, and
Bools aren't numbers. Contradiction.

6. Possible fix: add an instance declaration for (Num Bool) suggests that it is possible to
�x the error by de�ning how Bools can be numbers. For example, if we tell GHCi that False is the
same as 0 and True is really 1, then the expression would compile9. Adding instance declarations is
explained in [XREF].

7. In the first argument of `(*)', namely `1' gives speci�c context for the error: the �rst
argument of *.

8. In the expression: 1 * False gives more general context.

9. In an equation for `it': it = 1 * False gives the most general context of the error. In
GHCi, it is an internal variable that stores the result of the previous computation.

Basically all type errors in GHCi follow the above format10. It's important to understand them as they're
the fastest way of identifying the problem, especially in very complex cases.

B.2.2. Ambiguous Type Variable Errors

Sometimes Haskell cannot successfully infer the types of the expressions involved. In that case, we are
presented with the following:

1 ghci > read "5"

2
3 <interactive >:1:1:

4 Ambiguous type variable `a0' in the constraint:

5 (Read a0) arising from a use of `read '

6 Probable fix: add a type signature that fixes these type variable(s)

7 In the expression: read "5"

8 In an equation for `it ': it = read "5"

We shall, yet again, dissect the error. The line-by-line analysis shows that:

1. ghci> read �5� is our ambiguous expression.

9In this case it's not recommended, seeing how multiplying a Bool and a number doesn't make much sense.
10Other interpreters may display di�erently.
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2. is an empty line. GHCi has the tendency to put that before long errors.

3. <interactive>:1:1: is the position of the ambiguous statement, [line]:[character]. Here, it's at
the very beginning of our interactive statement.

4. Ambiguous type variable `a0' in the constraint: tells us that GHCi cannot infer the type
because it has multiple �solutions�.

5. (Read a0) arising from a use of `read' indicates that the typeclass Read contains multi-
ple types. What it doesn't say, but we know, is that Haskell must know the speci�c type to read. For
example, 5 can be read as:

a) A character ('5')

b) A number (5)

c) A string (�5�)

d) Many, many others

6. Probable fix: add a type signature that fixes these type variable(s) recommends �x-
ing the error by adding an expicit type signature11. GHCi implies (�probable�) that in most cases this
would be the desireable action.

7. In the expression: read �5� is the context of the ambiguity.

8. In an equation for `it': it = read �5� gives even more context. With all this info, it's hard
not to identify and �x the problem immediately!

B.2.3. Making Custom Errors

A more expressive way of �correcting� a program without actually suppressing the error is to write our own
error message. We might want this if it's the user's fault for incorrect input, and we want to halt the
program, as well as help the user in �xing the input. We will use the 4.1.1 base example, reproduced below
for convenience.

1 -- File: patterns -wrong.hs

2
3 intToString :: Int -> [Char]

4 intToString 1 = "one"

5 intToString 2 = "two"

6 intToString 3 = "three"

The error function takes a string and throws an error with that message.

1 -- File: patterns -wrong.hs (FIXED)

2
3 intToString :: Int -> [Char]

4 intToString 1 = "one"

5 intToString 2 = "two"

6 intToString 3 = "three"

7 intToString _ = error "intToString: Number too large"

Notice that the error handler doesn't know the name of the function beforehand, so we might want to include
it in the error message, like above.

1 ghci > intToString 20

2 *** Exception: intToString: Number too large

11Such as :: Int or :: Char.
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B. Types and Typeclasses

Because error is an ordinary function, we can also do some magic to make it more expressive.

1 -- File: patterns -wrong.hs (FIXED)

2
3 intToString :: Int -> [Char]

4 intToString 1 = "one"

5 intToString 2 = "two"

6 intToString 3 = "three"

7 intToString n = error ("intToString: Number " ++ show n ++ " too large")

1 ghci > intToString 20

2 *** Exception: intToString: Number 20 too large

Cusomizing error messages is not mandatory, but it's a very good idea, especially in long and complicated
programs. Of course, the real solution is never to crash expressively, but to actually aid the user without
blowing the program to smithereens: graceful failure. We learn such methods late in the book, in [XREF]
and [XREF].
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C. Modules

C.1. Data.List

The Data.List module is the one-stop shop for all our list goodies. It supports many functions, detailed
below. The trickier ones have example code.

[FIXME]
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D. Hints to Exercises

D.1. Introduction

D.1.1. About the Book

This would be the place that the hints to this exercise will be located. Watch out not to accidentally spoil
adjacent exercises when you read! I'd personally suggest reading one sentence at a time with pauses in
between.

1. This would be a hint to the �rst exercise.

a) Any additional hints

b) would look like this.

D.1.2. Why Haskell?

Since we're not really into the book yet, I �gure I'd give my own answers to these open questions here.
Practice not reading ahead here.

1. I guess I �rst learned Haskell because I wanted to try out programming languages and see if I had a
favorite.

a) I immediately fell in love with Haskell.

b) This was consolidated when I tried XMonad out...

c) And here I am! I was sure I'd get bored of it in a couple of weeks but it stuck for some reason.

2. I actually knew little programming when I started out, maybe a bit of C.

a) Actually, I don't know much programming now either! I like it, but not enough to do it on a
constant basis.1

b) I usually program just for the hell of it and can't really see myself doing this as my primary job.2

c) But yeah, back when I started with Haskell, I think not really knowing any programming helped
me.

d) I was more open-minded about things (because I didn't know much of anything!) and didn't really
�nd it weird that there are no variables, or the strange meaning that Haskell gives to �classes�.

3. *This is not the third answer.

4. **This is the answer to the fourth exercise. This one would be obscenely detailed because the problem
is really hard!

1It's been almost two years since I wrote this sentence. I really enjoy programming! I'd do it all the time!
2How times have changed! I could totally see myself doing programming as my primary job!
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D. Hints to Exercises

D.1.3. Before We Start

1. I honestly can't help you with this one. It depends on your choice and what operating system you run.
Check the following things:

a) How does the manual/website instruct you to open the interpreter?

b) Do you need to have any additional programs installed?

c) Is there any speci�c error message that is given? Try to look it up on Google.

2. If it won't load, what does the error tell you?

a) Is starting-out.hs in a di�erent directory than the one you opened GHCi (or other interpreter)
in? If so, what do you need to do?

b) You don't have to move starting-out.hs to that directory (but it works).

c) Does it say anything about syntax? You might want to check if you made any typos.

d) Take a look at the example �le and interactive session. They should look similar.

3. How do you test for equality?

a) The test for equality is not =.

b) However, it is very similar. Do not confuse = with the real one.

c) Take a look at the example interactive session. We've done something similar there.

4. Have you tried adding a new line at the end that says b = 5?

a) That won't work. You can't usually de�ne a variable twice.

b) You're stuck with changing the initial de�nition of b. Don't worry, in the real world you almost
never need to de�ne something twice!

D.2. Basics: Functions and Lists

D.2.1. Getting Started

1. The answer should be 2.551somethingsomething. I think.

a) The idea of this exercise was to emphasize the importance of readability in your code. If the code
isn't readable, all sorts of problems will inevitably occur: the code will be hard to modify, hard
to maintain, hard to understand. Errors will creep in and ruin hours of work. It's a disaster.

b) Some of the techniques to improve readability are (more on these later):

i. Commenting the code

ii. Splitting large functions into smaller ones

iii. Using some of the fancier features of Haskell

iv. Making functions more abstract

2. max only accepts two parameters, but you need three. What do you do?

a) One of the solutions uses max twice and also needs a pair of parentheses.

b) What is max 2 3? Can you feed it further along the line?

c) One other solution involves no parentheses at all and it's intuitive.
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D. Hints to Exercises

d) What would you do if you needed to add three numbers? What feature of the language enables
max to work the same way?

3. We've discussed max already. Addition and multiplication are pretty straightforward. The real problem
might be with equality.

a) Did you do x == y == z? Why doesn't it work?

b) Equality is not associative. To �x that, have you tried grouping the expressions with parentheses?

c) It won't work. Why not?

d) Remember the functions that operate on booleans? You need one of them. Which one?

4. *One of the solutions uses a purely mathematical method that only works with numbers. The other
one uses a feature of the language that we've only touched once so far.

a) How would you calculate the maximum between two numbers using only mathematical operators?

b) Remember that only max and min are disallowed. You might want to use a special function that
we've only mentioned by name.

c) It's the modulus function that gives the absolute value of a number. What is its name in Haskell?

d) The function you want is abs. You must combine +, -, abs, and / in a coherent function that
does what you want.

e) The other solution works on everything that can be ordered, not just numbers. It requires a
feature of the language that lets us do di�erent things depending if a condition is true or not.

f) What does max x y return if x = 2 and y = 3, x or y? What if x = 3 and y = 2?

g) The condition that you want to test for is if x < y. What do you do now? Look back on what
we've seen so far. It's in one of the code examples.

h) Again, this exercise has a purpose that is beyond academic. One of the solutions is narrow (only
works on numbers) and not terribly elegant3. The other works on all possible inputs with one
simple condition (that they can be ordered), is more e�cient and much easier to read. The second
solution is obviously preferable but in Haskell such solutions are seldom obvious or trivial. We'll
need to work for them.

3Not to mention that giving it two integers returns a fractional number which might make other functions down the line (those
that expect to be given integers) choke on them.
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