
Functional
Programming
in Python

David Mertz

Additional
Resources
4 Easy Ways to Learn More and Stay Current

Programming Newsletter
Get programming related news and content delivered weekly to your inbox.
oreilly.com/programming/newsletter

Free Webcast Series
Learn about popular programming topics from experts live, online.
webcasts.oreilly.com

O’Reilly Radar
Read more insight and analysis about emerging technologies.
radar.oreilly.com

Conferences
Immerse yourself in learning at an upcoming O’Reilly conference.
conferences.oreilly.com

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15305

http://oreilly.com/programming/newsletter
http://webcasts.oreilly.com
http://radar.oreilly.com
http://conferences.oreilly.com

David Mertz

Functional Programming
in Python

978-1-491-92856-1

[LSI]

Functional Programming in Python
by David Mertz

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

See: http://creativecommons.org/licenses/by-sa/4.0/

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Shiny Kalapurakkel
Proofreader: Charles Roumeliotis

Interior Designer: David Futato
Cover Designer: Karen Montgomery

May 2015: First Edition

Revision History for the First Edition
2015-05-27: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Functional Pro‐
gramming in Python, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Preface. v

(Avoiding) Flow Control. 1
Encapsulation 1
Comprehensions 2
Recursion 5
Eliminating Loops 7

Callables. 11
Named Functions and Lambdas 12
Closures and Callable Instances 13
Methods of Classes 15
Multiple Dispatch 19

Lazy Evaluation. 25
The Iterator Protocol 27
Module: itertools 29

Higher-Order Functions. 33
Utility Higher-Order Functions 35
The operator Module 36
The functools Module 36
Decorators 37

iii

Preface

What Is Functional Programming?
We’d better start with the hardest question: “What is functional pro‐
gramming (FP), anyway?”

One answer would be to say that functional programming is what
you do when you program in languages like Lisp, Scheme, Clojure,
Scala, Haskell, ML, OCAML, Erlang, or a few others. That is a safe
answer, but not one that clarifies very much. Unfortunately, it is
hard to get a consistent opinion on just what functional program‐
ming is, even from functional programmers themselves. A story
about elephants and blind men seems apropos here. It is also safe to
contrast functional programming with “imperative programming”
(what you do in languages like C, Pascal, C++, Java, Perl, Awk, TCL,
and most others, at least for the most part). Functional program‐
ming is also not object-oriented programming (OOP), although
some languages are both. And it is not Logic Programming (e.g.,
Prolog), but again some languages are multiparadigm.

Personally, I would roughly characterize functional programming as
having at least several of the following characteristics. Languages
that get called functional make these things easy, and make other
things either hard or impossible:

• Functions are first class (objects). That is, everything you can do
with “data” can be done with functions themselves (such as
passing a function to another function).

• Recursion is used as a primary control structure. In some lan‐
guages, no other “loop” construct exists.

v

• There is a focus on list processing (for example, it is the source
of the name Lisp). Lists are often used with recursion on sublists
as a substitute for loops.

• “Pure” functional languages eschew side effects. This excludes
the almost ubiquitous pattern in imperative languages of assign‐
ing first one, then another value to the same variable to track
the program state.

• Functional programming either discourages or outright disal‐
lows statements, and instead works with the evaluation of
expressions (in other words, functions plus arguments). In the
pure case, one program is one expression (plus supporting defi‐
nitions).

• Functional programming worries about what is to be computed
rather than how it is to be computed.

• Much functional programming utilizes “higher order” functions
(in other words, functions that operate on functions that oper‐
ate on functions).

Advocates of functional programming argue that all these character‐
istics make for more rapidly developed, shorter, and less bug-prone
code. Moreover, high theorists of computer science, logic, and math
find it a lot easier to prove formal properties of functional languages
and programs than of imperative languages and programs. One cru‐
cial concept in functional programming is that of a
“pure function”—one that always returns the same result given the
same arguments—which is more closely akin to the meaning of
“function” in mathematics than that in imperative programming.

Python is most definitely not a “pure functional programming lan‐
guage”; side effects are widespread in most Python programs. That
is, variables are frequently rebound, mutable data collections often
change contents, and I/O is freely interleaved with computation. It is
also not even a “functional programming language” more generally.
However, Python is a multiparadigm language that makes functional
programming easy to do when desired, and easy to mix with other
programming styles.

Beyond the Standard Library
While they will not be discussed withing the limited space of this
report, a large number of useful third-party Python libraries for

vi | Preface

functional programming are available. The one exception here is
that I will discuss Matthew Rocklin’s multipledispatch as the best
current implementation of the concept it implements.

Most third-party libraries around functional programming are col‐
lections of higher-order functions, and sometimes enhancements to
the tools for working lazily with iterators contained in itertools.
Some notable examples include the following, but this list should
not be taken as exhaustive:

• pyrsistent contains a number of immutable collections. All
methods on a data structure that would normally mutate it
instead return a new copy of the structure containing the
requested updates. The original structure is left untouched.

• toolz provides a set of utility functions for iterators, functions,
and dictionaries. These functions interoperate well and form the
building blocks of common data analytic operations. They
extend the standard libraries itertools and functools and
borrow heavily from the standard libraries of contemporary
functional languages.

• hypothesis is a library for creating unit tests for finding edge
cases in your code you wouldn’t have thought to look for. It
works by generating random data matching your specification
and checking that your guarantee still holds in that case. This is
often called property-based testing, and was popularized by the
Haskell library QuickCheck.

• more_itertools tries to collect useful compositions of iterators
that neither itertools nor the recipes included in its docs
address. These compositions are deceptively tricky to get right
and this well-crafted library helps users avoid pitfalls of rolling
them themselves.

Resources
There are a large number of other papers, articles, and books written
about functional programming, in Python and otherwise. The
Python standard documentation itself contains an excellent intro‐
duction called “Functional Programming HOWTO,” by Andrew
Kuchling, that discusses some of the motivation for functional pro‐
gramming styles, as well as particular capabilities in Python.

Preface | vii

http://multiple-dispatch.readthedocs.org/en/latest/
http://pyrsistent.readthedocs.org/en/latest/intro.html
https://toolz.readthedocs.org/en/latest/
http://hypothesis.readthedocs.org/en/latest/
https://pythonhosted.org/more-itertools/index.html
https://docs.python.org/3.5/howto/functional.html

Mentioned in Kuchling’s introduction are several very old public
domain articles this author wrote in the 2000s, on which portions of
this report are based. These include:

• The first chapter of my book Text Processing in Python, which
discusses functional programming for text processing, in the
section titled “Utilizing Higher-Order Functions in Text Pro‐
cessing.”

I also wrote several articles, mentioned by Kuchling, for IBM’s devel‐
operWorks site that discussed using functional programming in an
early version of Python 2.x:

• Charming Python: Functional programming in Python, Part 1:
Making more out of your favorite scripting language

• Charming Python: Functional programming in Python, Part 2:
Wading into functional programming?

• Charming Python: Functional programming in Python, Part 3:
Currying and other higher-order functions

Not mentioned by Kuchling, and also for an older version of
Python, I discussed multiple dispatch in another article for the same
column. The implementation I created there has no advantages over
the more recent multipledispatch library, but it provides a longer
conceptual explanation than this report can:

• Charming Python: Multiple dispatch: Generalizing polymor‐
phism with multimethods

A Stylistic Note
As in most programming texts, a fixed font will be used both for
inline and block samples of code, including simple command or
function names. Within code blocks, a notional segment of pseudo-
code is indicated with a word surrounded by angle brackets (i.e., not
valid Python), such as <code-block>. In other cases, syntactically
valid but undefined functions are used with descriptive names, such
as get_the_data().

viii | Preface

http://gnosis.cx/TPiP/
http://www.ibm.com/developerworks/linux/library/l-prog/index.html
http://www.ibm.com/developerworks/linux/library/l-prog2/index.html
http://www.ibm.com/developerworks/linux/library/l-prog3/index.html
http://www.ibm.com/developerworks/library/l-pydisp/

(Avoiding) Flow Control

In typical imperative Python programs—including those that make
use of classes and methods to hold their imperative code—a block of
code generally consists of some outside loops (for or while), assign‐
ment of state variables within those loops, modification of data
structures like dicts, lists, and sets (or various other structures,
either from the standard library or from third-party packages), and
some branch statements (if/elif/else or try/except/finally). All
of this is both natural and seems at first easy to reason about. The
problems often arise, however, precisely with those side effects that
come with state variables and mutable data structures; they often
model our concepts from the physical world of containers fairly
well, but it is also difficult to reason accurately about what state data
is in at a given point in a program.

One solution is to focus not on constructing a data collection but
rather on describing “what” that data collection consists of. When
one simply thinks, “Here’s some data, what do I need to do with it?”
rather than the mechanism of constructing the data, more direct
reasoning is often possible. The imperative flow control described in
the last paragraph is much more about the “how” than the “what”
and we can often shift the question.

Encapsulation
One obvious way of focusing more on “what” than “how” is simply
to refactor code, and to put the data construction in a more isolated
place—i.e., in a function or method. For example, consider an exist‐
ing snippet of imperative code that looks like this:

1

configure the data to start with
collection = get_initial_state()
state_var = None
for datum in data_set:
 if condition(state_var):
 state_var = calculate_from(datum)
 new = modify(datum, state_var)
 collection.add_to(new)
 else:
 new = modify_differently(datum)
 collection.add_to(new)

Now actually work with the data
for thing in collection:
 process(thing)

We might simply remove the “how” of the data construction from
the current scope, and tuck it away in a function that we can think
about in isolation (or not think about at all once it is sufficiently
abstracted). For example:

tuck away construction of data
def make_collection(data_set):
 collection = get_initial_state()
 state_var = None
 for datum in data_set:
 if condition(state_var):
 state_var = calculate_from(datum, state_var)
 new = modify(datum, state_var)
 collection.add_to(new)
 else:
 new = modify_differently(datum)
 collection.add_to(new)
 return collection

Now actually work with the data
for thing in make_collection(data_set):
 process(thing)

We haven’t changed the programming logic, nor even the lines of
code, at all, but we have still shifted the focus from “How do we con‐
struct collection?” to “What does make_collection() create?”

Comprehensions
Using comprehensions is often a way both to make code more com‐
pact and to shift our focus from the “how” to the “what.” A compre‐
hension is an expression that uses the same keywords as loop and
conditional blocks, but inverts their order to focus on the data

2 | (Avoiding) Flow Control

rather than on the procedure. Simply changing the form of expres‐
sion can often make a surprisingly large difference in how we reason
about code and how easy it is to understand. The ternary operator
also performs a similar restructuring of our focus, using the same
keywords in a different order. For example, if our original code was:

collection = list()
for datum in data_set:
 if condition(datum):
 collection.append(datum)
 else:
 new = modify(datum)
 collection.append(new)

Somewhat more compactly we could write this as:

collection = [d if condition(d) else modify(d)
 for d in data_set]

Far more important than simply saving a few characters and lines is
the mental shift enacted by thinking of what collection is, and by
avoiding needing to think about or debug “What is the state of col
lection at this point in the loop?”

List comprehensions have been in Python the longest, and are in
some ways the simplest. We now also have generator comprehen‐
sions, set comprehensions, and dict comprehensions available in
Python syntax. As a caveat though, while you can nest comprehen‐
sions to arbitrary depth, past a fairly simple level they tend to stop
clarifying and start obscuring. For genuinely complex construction
of a data collection, refactoring into functions remains more reada‐
ble.

Generators
Generator comprehensions have the same syntax as list comprehen‐
sions—other than that there are no square brackets around them
(but parentheses are needed syntactically in some contexts, in place
of brackets)—but they are also lazy. That is to say that they are
merely a description of “how to get the data” that is not realized
until one explicitly asks for it, either by calling .next() on the
object, or by looping over it. This often saves memory for large
sequences and defers computation until it is actually needed. For
example:

log_lines = (line for line in read_line(huge_log_file)
 if complex_condition(line))

Comprehensions | 3

For typical uses, the behavior is the same as if you had constructed a
list, but runtime behavior is nicer. Obviously, this generator compre‐
hension also has imperative versions, for example:

def get_log_lines(log_file):
 line = read_line(log_file)
 while True:
 try:
 if complex_condition(line):
 yield line
 line = read_line(log_file)
 except StopIteration:
 raise

log_lines = get_log_lines(huge_log_file)

Yes, the imperative version could be simplified too, but the version
shown is meant to illustrate the behind-the-scenes “how” of a for
loop over an iteratable—more details we also want to abstract from
in our thinking. In fact, even using yield is somewhat of an abstrac‐
tion from the underlying “iterator protocol.” We could do this with a
class that had .__next__() and .__iter__() methods. For example:

class GetLogLines(object):
 def __init__(self, log_file):
 self.log_file = log_file
 self.line = None
 def __iter__(self):
 return self
 def __next__(self):
 if self.line is None:
 self.line = read_line(log_file)
 while not complex_condition(self.line):
 self.line = read_line(self.log_file)
 return self.line

log_lines = GetLogLines(huge_log_file)

Aside from the digression into the iterator protocol and laziness
more generally, the reader should see that the comprehension focu‐
ses attention much better on the “what,” whereas the imperative ver‐
sion—although successful as refactorings perhaps—retains the focus
on the “how.”

Dicts and Sets
In the same fashion that lists can be created in comprehensions
rather than by creating an empty list, looping, and repeatedly call‐

4 | (Avoiding) Flow Control

ing .append(), dictionaries and sets can be created “all at once”
rather than by repeatedly calling .update() or .add() in a loop. For
example:

>>> {i:chr(65+i) for i in range(6)}
{0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
>>> {chr(65+i) for i in range(6)}
{'A', 'B', 'C', 'D', 'E', 'F'}

The imperative versions of these comprehensions would look very
similar to the examples shown earlier for other built-in datatypes.

Recursion
Functional programmers often put weight in expressing flow con‐
trol through recursion rather than through loops. Done this way, we
can avoid altering the state of any variables or data structures within
an algorithm, and more importantly get more at the “what” than the
“how” of a computation. However, in considering using recursive
styles we should distinguish between the cases where recursion is
just “iteration by another name” and those where a problem can
readily be partitioned into smaller problems, each approached in a
similar way.

There are two reasons why we should make the distinction men‐
tioned. On the one hand, using recursion effectively as a way of
marching through a sequence of elements is, while possible, really
not “Pythonic.” It matches the style of other languages like Lisp, def‐
initely, but it often feels contrived in Python. On the other hand,
Python is simply comparatively slow at recursion, and has a limited
stack depth limit. Yes, you can change this with sys.setrecursion
limit() to more than the default 1000; but if you find yourself
doing so it is probably a mistake. Python lacks an internal feature
called tail call elimination that makes deep recursion computation‐
ally efficient in some languages. Let us find a trivial example where
recursion is really just a kind of iteration:

def running_sum(numbers, start=0):
 if len(numbers) == 0:
 print()
 return
 total = numbers[0] + start
 print(total, end=" ")
 running_sum(numbers[1:], total)

Recursion | 5

There is little to recommend this approach, however; an iteration
that simply repeatedly modified the total state variable would be
more readable, and moreover this function is perfectly reasonable to
want to call against sequences of much larger length than 1000.
However, in other cases, recursive style, even over sequential opera‐
tions, still expresses algorithms more intuitively and in a way that is
easier to reason about. A slightly less trivial example, factorial in
recursive and iterative style:

def factorialR(N):
 "Recursive factorial function"
 assert isinstance(N, int) and N >= 1
 return 1 if N <= 1 else N * factorialR(N-1)

def factorialI(N):
 "Iterative factorial function"
 assert isinstance(N, int) and N >= 1
 product = 1
 while N >= 1:
 product *= N
 N -= 1
 return product

Although this algorithm can also be expressed easily enough with a
running product variable, the recursive expression still comes closer
to the “what” than the “how” of the algorithm. The details of repeat‐
edly changing the values of product and N in the iterative version
feels like it’s just bookkeeping, not the nature of the computation
itself (but the iterative version is probably faster, and it is easy to
reach the recursion limit if it is not adjusted).

As a footnote, the fastest version I know of for factorial() in
Python is in a functional programming style, and also expresses the
“what” of the algorithm well once some higher-order functions are
familiar:

from functools import reduce
from operator import mul
def factorialHOF(n):
 return reduce(mul, range(1, n+1), 1)

Where recursion is compelling, and sometimes even the only really
obvious way to express a solution, is when a problem offers itself to
a “divide and conquer” approach. That is, if we can do a similar
computation on two halves (or anyway, several similarly sized
chunks) of a larger collection. In that case, the recursion depth is
only O(log N) of the size of the collection, which is unlikely to be

6 | (Avoiding) Flow Control

overly deep. For example, the quicksort algorithm is very elegantly
expressed without any state variables or loops, but wholly through
recursion:

def quicksort(lst):
 "Quicksort over a list-like sequence"
 if len(lst) == 0:
 return lst
 pivot = lst[0]
 pivots = [x for x in lst if x == pivot]
 small = quicksort([x for x in lst if x < pivot])
 large = quicksort([x for x in lst if x > pivot])
 return small + pivots + large

Some names are used in the function body to hold convenient val‐
ues, but they are never mutated. It would not be as readable, but the
definition could be written as a single expression if we wanted to do
so. In fact, it is somewhat difficult, and certainly less intuitive, to
transform this into a stateful iterative version.

As general advice, it is good practice to look for possibilities of
recursive expression—and especially for versions that avoid the
need for state variables or mutable data collections—whenever a
problem looks partitionable into smaller problems. It is not a good
idea in Python—most of the time—to use recursion merely for “iter‐
ation by other means.”

Eliminating Loops
Just for fun, let us take a quick look at how we could take out all
loops from any Python program. Most of the time this is a bad idea,
both for readability and performance, but it is worth looking at how
simple it is to do in a systematic fashion as background to contem‐
plate those cases where it is actually a good idea.

If we simply call a function inside a for loop, the built-in higher-
order function map() comes to our aid:

for e in it: # statement-based loop
 func(e)

The following code is entirely equivalent to the functional version,
except there is no repeated rebinding of the variable e involved, and
hence no state:

map(func, it) # map()-based "loop"

Eliminating Loops | 7

A similar technique is available for a functional approach to sequen‐
tial program flow. Most imperative programming consists of state‐
ments that amount to “do this, then do that, then do the other
thing.” If those individual actions are wrapped in functions, map()
lets us do just this:

let f1, f2, f3 (etc) be functions that perform actions
an execution utility function
do_it = lambda f, *args: f(*args)
map()-based action sequence
map(do_it, [f1, f2, f3])

We can combine the sequencing of function calls with passing argu‐
ments from iterables:

>>> hello = lambda first, last: print("Hello", first, last)
>>> bye = lambda first, last: print("Bye", first, last)
>>> _ = list(map(do_it, [hello, bye],
>>> ['David','Jane'], ['Mertz','Doe']))
Hello David Mertz
Bye Jane Doe

Of course, looking at the example, one suspects the result one really
wants is actually to pass all the arguments to each of the functions
rather than one argument from each list to each function. Express‐
ing that is difficult without using a list comprehension, but easy
enough using one:

>>> do_all_funcs = lambda fns, *args: [
 list(map(fn, *args)) for fn in fns]
>>> _ = do_all_funcs([hello, bye],
 ['David','Jane'], ['Mertz','Doe'])
Hello David Mertz
Hello Jane Doe
Bye David Mertz
Bye Jane Doe

In general, the whole of our main program could, in principle, be a
map() expression with an iterable of functions to execute to com‐
plete the program.

Translating while is slightly more complicated, but is possible to do
directly using recursion:

statement-based while loop
while <cond>:
 <pre-suite>
 if <break_condition>:
 break
 else:

8 | (Avoiding) Flow Control

 <suite>

FP-style recursive while loop
def while_block():
 <pre-suite>
 if <break_condition>:
 return 1
 else:
 <suite>
 return 0

while_FP = lambda: (<cond> and while_block()) or while_FP()
while_FP()

Our translation of while still requires a while_block() function
that may itself contain statements rather than just expressions. We
could go further in turning suites into function sequences, using
map() as above. If we did this, we could, moreover, also return a sin‐
gle ternary expression. The details of this further purely functional
refactoring is left to readers as an exercise (hint: it will be ugly; fun
to play with, but not good production code).

It is hard for <cond> to be useful with the usual tests, such as while
myvar==7, since the loop body (by design) cannot change any vari‐
able values. One way to add a more useful condition is to let
while_block() return a more interesting value, and compare that
return value for a termination condition. Here is a concrete example
of eliminating statements:

imperative version of "echo()"
def echo_IMP():
 while 1:
 x = input("IMP -- ")
 if x == 'quit':
 break
 else:
 print(x)
echo_IMP()

Now let’s remove the while loop for the functional version:

FP version of "echo()"
def identity_print(x): # "identity with side-effect"
 print(x)
 return x
echo_FP = lambda: identity_print(input("FP -- "))=='quit' or
echo_FP()
echo_FP()

Eliminating Loops | 9

What we have accomplished is that we have managed to express a
little program that involves I/O, looping, and conditional statements
as a pure expression with recursion (in fact, as a function object that
can be passed elsewhere if desired). We do still utilize the utility
function identity_print(), but this function is completely general,
and can be reused in every functional program expression we might
create later (it’s a one-time cost). Notice that any expression contain‐
ing identity_print(x) evaluates to the same thing as if it had sim‐
ply contained x; it is only called for its I/O side effect.

Eliminating Recursion
As with the simple factorial example given above, sometimes we can
perform “recursion without recursion” by using func

tools.reduce() or other folding operations (other “folds” are not in
the Python standard library, but can easily be constructed and/or
occur in third-party libraries). A recursion is often simply a way of
combining something simpler with an accumulated intermediate
result, and that is exactly what reduce() does at heart. A slightly
longer discussion of functools.reduce() occurs in the chapter on
higher-order functions.

10 | (Avoiding) Flow Control

Callables

The emphasis in functional programming is, somewhat tautolo‐
gously, on calling functions. Python actually gives us several differ‐
ent ways to create functions, or at least something very function-like
(i.e., that can be called). They are:

• Regular functions created with def and given a name at defini‐
tion time

• Anonymous functions created with lambda
• Instances of classes that define a __call()__ method
• Closures returned by function factories
• Static methods of instances, either via the @staticmethod deco‐

rator or via the class __dict__
• Generator functions

This list is probably not exhaustive, but it gives a sense of the
numerous slightly different ways one can create something callable.
Of course, a plain method of a class instance is also a callable, but
one generally uses those where the emphasis is on accessing and
modifying mutable state.

Python is a multiple paradigm language, but it has an emphasis on
object-oriented styles. When one defines a class, it is generally to
generate instances meant as containers for data that change as one
calls methods of the class. This style is in some ways opposite to a
functional programming approach, which emphasizes immutability
and pure functions.

11

Any method that accesses the state of an instance (in any degree) to
determine what result to return is not a pure function. Of course, all
the other types of callables we discuss also allow reliance on state in
various ways. The author of this report has long pondered whether
he could use some dark magic within Python explicitly to declare a
function as pure—say by decorating it with a hypothetical
@purefunction decorator that would raise an exception if the func‐
tion can have side effects—but consensus seems to be that it would
be impossible to guard against every edge case in Python’s internal
machinery.

The advantage of a pure function and side-effect-free code is that it is
generally easier to debug and test. Callables that freely intersperse
statefulness with their returned results cannot be examined inde‐
pendently of their running context to see how they behave, at least
not entirely so. For example, a unit test (using doctest or unittest,
or some third-party testing framework such as py.test or nose)
might succeed in one context but fail when identical calls are made
within a running, stateful program. Of course, at the very least, any
program that does anything must have some kind of output
(whether to console, a file, a database, over the network, or what‐
ever) in it to do anything useful, so side effects cannot be entirely
eliminated, only isolated to a degree when thinking in functional
programming terms.

Named Functions and Lambdas
The most obvious ways to create callables in Python are, in definite
order of obviousness, named functions and lambdas. The only in-
principle difference between them is simply whether they have
a .__qualname__ attribute, since both can very well be bound to one
or more names. In most cases, lambda expressions are used within
Python only for callbacks and other uses where a simple action is
inlined into a function call. But as we have shown in this report, flow
control in general can be incorporated into single-expression lamb‐
das if we really want. Let’s define a simple example to illustrate:

>>> def hello1(name):
..... print("Hello", name)
.....
>>> hello2 = lambda name: print("Hello", name)
>>> hello1('David')
Hello David

12 | Callables

>>> hello2('David')
Hello David
>>> hello1.__qualname__
'hello1'
>>> hello2.__qualname__
'<lambda>'
>>> hello3 = hello2 # can bind func to other names
>>> hello3.__qualname__
'<lambda>'
>>> hello3.__qualname__ = 'hello3'
>>> hello3.__qualname__
'hello3'

One of the reasons that functions are useful is that they isolate state
lexically, and avoid contamination of enclosing namespaces. This is
a limited form of nonmutability in that (by default) nothing you do
within a function will bind state variables outside the function. Of
course, this guarantee is very limited in that both the global and
nonlocal statements explicitly allow state to “leak out” of a function.
Moreover, many data types are themselves mutable, so if they are
passed into a function that function might change their contents.
Furthermore, doing I/O can also change the “state of the world” and
hence alter results of functions (e.g., by changing the contents of a
file or a database that is itself read elsewhere).

Notwithstanding all the caveats and limits mentioned above, a pro‐
grammer who wants to focus on a functional programming style can
intentionally decide to write many functions as pure functions to
allow mathematical and formal reasoning about them. In most
cases, one only leaks state intentionally, and creating a certain subset
of all your functionality as pure functions allows for cleaner code.
They might perhaps be broken up by “pure” modules, or annotated
in the function names or docstrings.

Closures and Callable Instances
There is a saying in computer science that a class is “data with opera‐
tions attached” while a closure is “operations with data attached.” In
some sense they accomplish much the same thing of putting logic
and data in the same object. But there is definitely a philosophical
difference in the approaches, with classes emphasizing mutable or
rebindable state, and closures emphasizing immutability and pure
functions. Neither side of this divide is absolute—at least in Python
—but different attitudes motivate the use of each.

Closures and Callable Instances | 13

Let us construct a toy example that shows this, something just past a
“hello world” of the different styles:

A class that creates callable adder instances
class Adder(object):
 def __init__(self, n):
 self.n = n
 def __call__(self, m):
 return self.n + m
add5_i = Adder(5) # "instance" or "imperative"

We have constructed something callable that adds five to an argu‐
ment passed in. Seems simple and mathematical enough. Let us also
try it as a closure:

def make_adder(n):
 def adder(m):
 return m + n
 return adder
add5_f = make_adder(5) # "functional"

So far these seem to amount to pretty much the same thing, but the
mutable state in the instance provides a attractive nuisance:

>>> add5_i(10)
15
>>> add5_f(10) # only argument affects result
15
>>> add5_i.n = 10 # state is readily changeable
>>> add5_i(10) # result is dependent on prior flow
20

The behavior of an “adder” created by either Adder() or
make_adder() is, of course, not determined until runtime in general.
But once the object exists, the closure behaves in a pure functional
way, while the class instance remains state dependent. One might
simply settle for “don’t change that state”—and indeed that is possi‐
ble (if no one else with poorer understanding imports and uses your
code)—but one is accustomed to changing the state of instances,
and a style that prevents abuse programmatically encourages better
habits.

There is a little “gotcha” about how Python binds variables in clo‐
sures. It does so by name rather than value, and that can cause con‐
fusion, but also has an easy solution. For example, what if we want
to manufacture several related closures encapsulating different data:

14 | Callables

almost surely not the behavior we intended!
>>> adders = []
>>> for n in range(5):
 adders.append(lambda m: m+n)
>>> [adder(10) for adder in adders]
[14, 14, 14, 14, 14]
>>> n = 10
>>> [adder(10) for adder in adders]
[20, 20, 20, 20, 20]

Fortunately, a small change brings behavior that probably better
meets our goal:

>>> adders = []
>>> for n in range(5):
.... adders.append(lambda m, n=n: m+n)
....
>>> [adder(10) for adder in adders]
[10, 11, 12, 13, 14]
>>> n = 10
>>> [adder(10) for adder in adders]
[10, 11, 12, 13, 14]
>>> add4 = adders[4]
>>> add4(10, 100) # Can override the bound value
110

Notice that using the keyword argument scope-binding trick allows
you to change the closed-over value; but this poses much less of a
danger for confusion than in the class instance. The overriding
value for the named variable must be passed explictly in the call
itself, not rebound somewhere remote in the program flow. Yes, the
name add4 is no longer accurately descriptive for “add any two
numbers,” but at least the change in result is syntactically local.

Methods of Classes
All methods of classes are callables. For the most part, however, call‐
ing a method of an instance goes against the grain of functional pro‐
gramming styles. Usually we use methods because we want to refer‐
ence mutable data that is bundled in the attributes of the instance,
and hence each call to a method may produce a different result that
varies independently of the arguments passed to it.

Accessors and Operators
Even accessors, whether created with the @property decorator or
otherwise, are technically callables, albeit accessors are callables with

Methods of Classes | 15

a limited use (from a functional programming perspective) in that
they take no arguments as getters, and return no value as setters:

class Car(object):
 def __init__(self):
 self._speed = 100

 @property
 def speed(self):
 print("Speed is", self._speed)
 return self._speed

 @speed.setter
 def speed(self, value):
 print("Setting to", value)
 self._speed = value

>> car = Car()
>>> car.speed = 80 # Odd syntax to pass one argument
Setting to 80
>>> x = car.speed
Speed is 80

In an accessor, we co-opt the Python syntax of assignment to pass an
argument instead. That in itself is fairly easy for much Python syn‐
tax though, for example:

>>> class TalkativeInt(int):
 def __lshift__(self, other):
 print("Shift", self, "by", other)
 return int.__lshift__(self, other)
....
>>> t = TalkativeInt(8)
>>> t << 3
Shift 8 by 3
64

Every operator in Python is basically a method call “under the
hood.” But while occasionally producing a more readable “domain
specific language” (DSL), defining special callable meanings for
operators adds no improvement to the underlying capabilities of
function calls.

Static Methods of Instances
One use of classes and their methods that is more closely aligned
with a functional style of programming is to use them simply as
namespaces to hold a variety of related functions:

16 | Callables

import math
class RightTriangle(object):
 "Class used solely as namespace for related functions"
 @staticmethod
 def hypotenuse(a, b):
 return math.sqrt(a**2 + b**2)

 @staticmethod
 def sin(a, b):
 return a / RightTriangle.hypotenuse(a, b)

 @staticmethod
 def cos(a, b):
 return b / RightTriangle.hypotenuse(a, b)

Keeping this functionality in a class avoids polluting the global (or
module, etc.) namespace, and lets us name either the class or an
instance of it when we make calls to pure functions. For example:

>>> RightTriangle.hypotenuse(3,4)
5.0
>>> rt = RightTriangle()
>>> rt.sin(3,4)
0.6
>>> rt.cos(3,4)
0.8

By far the most straightforward way to define static methods is with
the decorator named in the obvious way. However, in Python 3.x,
you can pull out functions that have not been so decorated too—i.e.,
the concept of an “unbound method” is no longer needed in
modern Python versions:

>>> import functools, operator
>>> class Math(object):
... def product(*nums):
... return functools.reduce(operator.mul, nums)
... def power_chain(*nums):
... return functools.reduce(operator.pow, nums)
...
>>> Math.product(3,4,5)
60
>>> Math.power_chain(3,4,5)
3486784401

Without @staticmethod, however, this will not work on the instan‐
ces since they still expect to be passed self:

>>> m = Math()
>>> m.product(3,4,5)

Methods of Classes | 17

TypeError
Traceback (most recent call last)
<ipython-input-5-e1de62cf88af> in <module>()
----> 1 m.product(3,4,5)

<ipython-input-2-535194f57a64> in product(*nums)
 2 class Math(object):
 3 def product(*nums):
----> 4 return functools.reduce(operator.mul, nums)
 5 def power_chain(*nums):
 6 return functools.reduce(operator.pow, nums)

TypeError: unsupported operand type(s) for *: 'Math' and 'int'

If your namespace is entirely a bag for pure functions, there is no
reason not to call via the class rather than the instance. But if you
wish to mix some pure functions with some other stateful methods
that rely on instance mutable state, you should use the @staticme
thod decorator.

Generator Functions
A special sort of function in Python is one that contains a yield
statement, which turns it into a generator. What is returned from
calling such a function is not a regular value, but rather an iterator
that produces a sequence of values as you call the next() function
on it or loop over it. This is discussed in more detail in the chapter
entitled “Lazy Evaluation.”

While like any Python object, there are many ways to introduce
statefulness into a generator, in principle a generator can be “pure”
in the sense of a pure function. It is merely a pure function that pro‐
duces a (potentially infinite) sequence of values rather than a single
value, but still based only on the arguments passed into it. Notice,
however, that generator functions typically have a great deal of inter‐
nal state; it is at the boundaries of call signature and return value
that they act like a side-effect-free “black box.” A simple example:

>>> def get_primes():
... "Simple lazy Sieve of Eratosthenes"
... candidate = 2
... found = []
... while True:
... if all(candidate % prime != 0 for prime in found):
... yield candidate
... found.append(candidate)
... candidate += 1

18 | Callables

...
>>> primes = get_primes()
>>> next(primes), next(primes), next(primes)
(2, 3, 5)
>>> for _, prime in zip(range(10), primes):
... print(prime, end=" ")
....
7 11 13 17 19 23 29 31 37 41

Every time you create a new object with get_primes() the iterator is
the same infinite lazy sequence—another example might pass in
some initializing values that affected the result—but the object itself
is stateful as it is consumed incrementally.

Multiple Dispatch
A very interesting approach to programming multiple paths of exe‐
cution is a technique called “multiple dispatch” or sometimes “mul‐
timethods.” The idea here is to declare multiple signatures for a sin‐
gle function and call the actual computation that matches the types
or properties of the calling arguments. This technique often allows
one to avoid or reduce the use of explicitly conditional branching,
and instead substitute the use of more intuitive pattern descriptions
of arguments.

A long time ago, this author wrote a module called multimethods
that was quite flexible in its options for resolving “dispatch lineariza‐
tion” but is also so old as only to work with Python 2.x, and was
even written before Python had decorators for more elegant expres‐
sion of the concept. Matthew Rocklin’s more recent multipledis
patch is a modern approach for recent Python versions, albeit it
lacks some of the theoretical arcana I explored in my ancient mod‐
ule. Ideally, in this author’s opinion, a future Python version would
include a standardized syntax or API for multiple dispatch (but
more likely the task will always be the domain of third-party libra‐
ries).

To explain how multiple dispatch can make more readable and less
bug-prone code, let us implement the game of rock/paper/scissors in
three styles. Let us create the classes to play the game for all the ver‐
sions:

class Thing(object): pass
class Rock(Thing): pass

Multiple Dispatch | 19

http://gnosis.cx/download/gnosis/magic/multimethods.py
http://multiple-dispatch.readthedocs.org/en/latest/
http://multiple-dispatch.readthedocs.org/en/latest/

class Paper(Thing): pass
class Scissors(Thing): pass

Many Branches
First a purely imperative version. This is going to have a lot of repet‐
itive, nested, conditional blocks that are easy to get wrong:

def beats(x, y):
 if isinstance(x, Rock):
 if isinstance(y, Rock):
 return None # No winner
 elif isinstance(y, Paper):
 return y
 elif isinstance(y, Scissors):
 return x
 else:
 raise TypeError("Unknown second thing")
 elif isinstance(x, Paper):
 if isinstance(y, Rock):
 return x
 elif isinstance(y, Paper):
 return None # No winner
 elif isinstance(y, Scissors):
 return y
 else:
 raise TypeError("Unknown second thing")
 elif isinstance(x, Scissors):
 if isinstance(y, Rock):
 return y
 elif isinstance(y, Paper):
 return x
 elif isinstance(y, Scissors):
 return None # No winner
 else:
 raise TypeError("Unknown second thing")
 else:
 raise TypeError("Unknown first thing")

rock, paper, scissors = Rock(), Paper(), Scissors()
>>> beats(paper, rock)
<__main__.Paper at 0x103b96b00>
>>> beats(paper, 3)
TypeError: Unknown second thing

Delegating to the Object
As a second try we might try to eliminate some of the fragile repiti‐
tion with Python’s “duck typing”—that is, maybe we can have differ‐
ent things share a common method that is called as needed:

20 | Callables

class DuckRock(Rock):
 def beats(self, other):
 if isinstance(other, Rock):
 return None # No winner
 elif isinstance(other, Paper):
 return other
 elif isinstance(other, Scissors):
 return self
 else:
 raise TypeError("Unknown second thing")

class DuckPaper(Paper):
 def beats(self, other):
 if isinstance(other, Rock):
 return self
 elif isinstance(other, Paper):
 return None # No winner
 elif isinstance(other, Scissors):
 return other
 else:
 raise TypeError("Unknown second thing")

class DuckScissors(Scissors):
 def beats(self, other):
 if isinstance(other, Rock):
 return other
 elif isinstance(other, Paper):
 return self
 elif isinstance(other, Scissors):
 return None # No winner
 else:
 raise TypeError("Unknown second thing")

def beats2(x, y):
 if hasattr(x, 'beats'):
 return x.beats(y)
 else:
 raise TypeError("Unknown first thing")

rock, paper, scissors = DuckRock(), DuckPaper(), DuckScissors()
>>> beats2(rock, paper)
<__main__.DuckPaper at 0x103b894a8>
>>> beats2(3, rock)
TypeError: Unknown first thing

We haven’t actually reduced the amount of code, but this version
somewhat reduces the complexity within each individual callable,
and reduces the level of nested conditionals by one. Most of the
logic is pushed into separate classes rather than deep branching. In

Multiple Dispatch | 21

object-oriented programming we can “delgate dispatch to the
object” (but only to the one controlling object).

Pattern Matching
As a final try, we can express all the logic more directly using multi‐
ple dispatch. This should be more readable, albeit there are still a
number of cases to define:

from multipledispatch import dispatch

@dispatch(Rock, Rock)
def beats3(x, y): return None

@dispatch(Rock, Paper)
def beats3(x, y): return y

@dispatch(Rock, Scissors)
def beats3(x, y): return x

@dispatch(Paper, Rock)
def beats3(x, y): return x

@dispatch(Paper, Paper)
def beats3(x, y): return None

@dispatch(Paper, Scissors)
def beats3(x, y): return x

@dispatch(Scissors, Rock)
def beats3(x, y): return y

@dispatch(Scissors, Paper)
def beats3(x, y): return x

@dispatch(Scissors, Scissors)
def beats3(x, y): return None

@dispatch(object, object)
def beats3(x, y):
 if not isinstance(x, (Rock, Paper, Scissors)):
 raise TypeError("Unknown first thing")
 else:
 raise TypeError("Unknown second thing")

>>> beats3(rock, paper)
<__main__.DuckPaper at 0x103b894a8>
>>> beats3(rock, 3)
TypeError: Unknown second thing

22 | Callables

Predicate-Based Dispatch
A really exotic approach to expressing conditionals as dispatch deci‐
sions is to include predicates directly within the function signatures
(or perhaps within decorators on them, as with multipledispatch).
I do not know of any well-maintained Python library that does this,
but let us simply stipulate a hypothetical library briefly to illustrate
the concept. This imaginary library might be aptly named
predicative_dispatch:

from predicative_dispatch import predicate

@predicate(lambda x: x < 0, lambda y: True)
def sign(x, y):
 print("x is negative; y is", y)

@predicate(lambda x: x == 0, lambda y: True)
def sign(x, y):
 print("x is zero; y is", y)

@predicate(lambda x: x > 0, lambda y: True)
def sign(x, y):
 print("x is positive; y is", y)

While this small example is obviously not a full specification, the
reader can see how we might move much or all of the conditional
branching into the function call signatures themselves, and this
might result in smaller, more easily understood and debugged func‐
tions.

Multiple Dispatch | 23

Lazy Evaluation

A powerful feature of Python is its iterator protocol (which we will
get to shortly). This capability is only loosely connected to func‐
tional programming per se, since Python does not quite offer lazy
data structures in the sense of a language like Haskell. However, use
of the iterator protocol—and Python’s many built-in or standard
library iteratables—accomplish much the same effect as an actual
lazy data structure.

Let us explain the contrast here in slightly more detail. In a language
like Haskell, which is inherently lazily evaluated, we might define a
list of all the prime numbers in a manner like the following:

-- Define a list of ALL the prime numbers
primes = sieve [2 ..]
 where sieve (p:xs) = p : sieve [x | x <- xs, (x `rem` p)/=0]

This report is not the place to try to teach Haskell, but you can see a
comprehension in there, which is in fact the model that Python used
in introducing its own comprehensions. There is also deep recursion
involved, which is not going to work in Python.

Apart from syntactic differences, or even the ability to recurse to
indefinite depth, the significant difference here is that the Haskell
version of primes is an actual (infinite) sequence, not just an object
capable of sequentially producing elements (as was the primes
object we demonstrated in the chapter entitled “Callables”). In par‐
ticular, you can index into an arbitrary element of the infinite list of
primes in Haskell, and the intermediate values will be produced
internally as needed based on the syntactic construction of the list
itself.

25

Mind you, one can replicate this in Python too, it just isn’t in the
inherent syntax of the language and takes more manual construc‐
tion. Given the get_primes() generator function discussed earlier,
we might write our own container to simulate the same thing, for
example:

from collections.abc import Sequence
class ExpandingSequence(Sequence):
 def __init__(self, it):
 self.it = it
 self._cache = []
 def __getitem__(self, index):
 while len(self._cache) <= index:
 self._cache.append(next(self.it))
 return self._cache[index]
 def __len__(self):
 return len(self._cache)

This new container can be both lazy and also indexible:

>>> primes = ExpandingSequence(get_primes())
>>> for _, p in zip(range(10), primes):
.... print(p, end=" ")
....
2 3 5 7 11 13 17 19 23 29
>>> primes[10]
31
>>> primes[5]
13
>>> len(primes)
11
>>> primes[100]
547
>>> len(primes)
101

Of course, there are other custom capabilities we might want to
engineer in, since lazy data structures are not inherently intertwined
into Python. Maybe we’d like to be able to slice this special sequence.
Maybe we’d like a prettier representation of the object when printed.
Maybe we should report the length as inf if we somehow signaled it
was meant to be infinite. All of this is possible, but it takes a little bit
of code to add each behavior rather than simply being the default
assumption of Python data structures.

26 | Lazy Evaluation

The Iterator Protocol
The easiest way to create an iterator—that is to say, a lazy sequence
—in Python is to define a generator function, as was discussed in
the chapter entitled “Callables.” Simply use the yield statement
within the body of a function to define the places (usually in a loop)
where values are produced.

Or, technically, the easiest way is to use one of the many iterable
objects already produced by built-ins or the standard library rather
than programming a custom one at all. Generator functions are syn‐
tax sugar for defining a function that returns an iterator.

Many objects have a method named .__iter__(), which will return
an iterator when it is called, generally via the iter() built-in func‐
tion, or even more often simply by looping over the object (e.g., for
item in collection: ...).

What an iterator is is the object returned by a call to iter(some
thing), which itself has a method named .__iter__() that simply
returns the object itself, and another method named .__next__().
The reason the iterable itself still has an .__iter__() method is to
make iter() idempotent. That is, this identity should always hold
(or raise TypeError("object is not iterable")):

iter_seq = iter(sequence)
iter(iter_seq) == iter_seq

The above remarks are a bit abstract, so let us look at a few concrete
examples:

>>> lazy = open('06-laziness.md') # iterate over lines of file
>>> '__iter__' in dir(lazy) and '__next__' in dir(lazy)
True
>>> plus1 = map(lambda x: x+1, range(10))
>>> plus1 # iterate over deferred computations
<map at 0x103b002b0>
>>> '__iter__' in dir(plus1) and '__next__' in dir(plus1)
True
>>> def to10():
... for i in range(10):
... yield i
...
>>> '__iter__' in dir(to10)
False
>>> '__iter__' in dir(to10()) and '__next__' in dir(to10())
True

The Iterator Protocol | 27

>>> l = [1,2,3]
>>> '__iter__' in dir(l)
True
>>> '__next__' in dir(l)
False
>>> li = iter(l) # iterate over concrete collection
>>> li
<list_iterator at 0x103b11278>
>>> li == iter(li)
True

In a functional programming style—or even just generally for read‐
ability—writing custom iterators as generator functions is most nat‐
ural. However, we can also create custom classes that obey the pro‐
tocol; often these will have other behaviors (i.e., methods) as well,
but most such behaviors necessarily rely on statefulness and side
effects to be meaningful. For example:

from collections.abc import Iterable
class Fibonacci(Iterable):
 def __init__(self):
 self.a, self.b = 0, 1
 self.total = 0
 def __iter__(self):
 return self
 def __next__(self):
 self.a, self.b = self.b, self.a + self.b
 self.total += self.a
 return self.a
 def running_sum(self):
 return self.total

>>> fib = Fibonacci()
>>> fib.running_sum()
0
>>> for _, i in zip(range(10), fib):
... print(i, end=" ")
...
1 1 2 3 5 8 13 21 34 55
>>> fib.running_sum()
143
>>> next(fib)
89

This example is trivial, of course, but it shows a class that both
implements the iterator protocol and also provides an additional
method to return something stateful about its instance. Since state‐
fulness is for object-oriented programmers, in a functional pro‐
gramming style we will generally avoid classes like this.

28 | Lazy Evaluation

Module: itertools
The module itertools is a collection of very powerful—and care‐
fully designed—functions for performing iterator algebra. That is,
these allow you to combine iterators in sophisticated ways without
having to concretely instantiate anything more than is currently
required. As well as the basic functions in the module itself, the
module documentation provides a number of short, but easy to get
subtly wrong, recipes for additional functions that each utilize two
or three of the basic functions in combination. The third-party
module more_itertools mentioned in the Preface provides addi‐
tional functions that are likewise designed to avoid common pitfalls
and edge cases.

The basic goal of using the building blocks inside itertools is to
avoid performing computations before they are required, to avoid
the memory requirements of a large instantiated collection, to avoid
potentially slow I/O until it is stricly required, and so on. Iterators
are lazy sequences rather than realized collections, and when com‐
bined with functions or recipes in itertools they retain this prop‐
erty.

Here is a quick example of combining a few things. Rather than the
stateful Fibonacci class to let us keep a running sum, we might sim‐
ply create a single lazy iterator to generate both the current number
and this sum:

>>> def fibonacci():
... a, b = 1, 1
... while True:
... yield a
... a, b = b, a+b
...
>>> from itertools import tee, accumulate
>>> s, t = tee(fibonacci())
>>> pairs = zip(t, accumulate(s))
>>> for _, (fib, total) in zip(range(7), pairs):
... print(fib, total)
...
1 1
1 2
2 4
3 7
5 12
8 20
13 33

Module: itertools | 29

https://docs.python.org/3.5/library/itertools.html

Figuring out exactly how to use functions in itertools correctly
and optimally often requires careful thought, but once combined,
remarkable power is obtained for dealing with large, or even infin‐
ite, iterators that could not be done with concrete collections.

The documentation for the itertools module contain details on its
combinatorial functions as well as a number of short recipes for
combining them. This paper does not have space to repeat those
descriptions, so just exhibiting a few of them above will suffice. Note
that for practical purposes, zip(), map(), filter(), and range()
(which is, in a sense, just a terminating itertools.count()) could
well live in itertools if they were not built-ins. That is, all of those
functions lazily generate sequential items (mostly based on existing
iterables) without creating a concrete sequence. Built-ins like all(),
any(), sum(), min(), max(), and functools.reduce() also act on
iterables, but all of them, in the general case, need to exhaust the
iterator rather than remain lazy. The function itertools.prod
uct() might be out of place in its module since it also creates con‐
crete cached sequences, and cannot operate on infinite iterators.

Chaining Iterables
The itertools.chain() and itertools.chain.from_iterable()
functions combine multiple iterables. Built-in zip() and iter
tools.zip_longest() also do this, of course, but in manners that
allow incremental advancement through the iterables. A conse‐
quence of this is that while chaining infinite iterables is valid syntac‐
tically and semantically, no actual program will exhaust the earlier
iterable. For example:

from itertools import chain, count
thrice_to_inf = chain(count(), count(), count())

Conceptually, thrice_to_inf will count to infinity three times, but
in practice once would always be enough. However, for merely large
iterables—not for infinite ones—chaining can be very useful and
parsimonious:

def from_logs(fnames):
 yield from (open(file) for file in fnames)
lines = chain.from_iterable(from_logs(
 ['huge.log', 'gigantic.log']))

30 | Lazy Evaluation

Notice that in the example given, we didn’t even need to pass in a
concrete list of files—that sequence of filenames itself could be a lazy
iterable per the API given.

Besides the chaining with itertools, we should mention collec
tions.ChainMap() in the same breath. Dictionaries (or generally
any collections.abc.Mapping) are iterable (over their keys). Just as
we might want to chain multiple sequence-like iterables, we some‐
times want to chain together multiple mappings without needing to
create a single larger concrete one. ChainMap() is handy, and does
not alter the underlying mappings used to construct it.

Module: itertools | 31

Higher-Order Functions

In the last chapter we saw an iterator algebra that builds on the iter
tools module. In some ways, higher-order functions (often abbrevi‐
ated as “HOFs”) provide similar building blocks to express complex
concepts by combining simpler functions into new functions. In
general, a higher-order function is simply a function that takes one or
more functions as arguments and/or produces a function as a result.
Many interesting abstractions are available here. They allow chain‐
ing and combining higher-order functions in a manner analogous to
how we can combine functions in itertools to produce new itera‐
bles.

A few useful higher-order functions are contained in the functools
module, and a few others are built-ins. It is common the think of
map(), filter(), and functools.reduce() as the most basic build‐
ing blocks of higher-order functions, and most functional program‐
ming languages use these functions as their primitives (occasionally
under other names). Almost as basic as map/filter/reduce as a build‐
ing block is currying. In Python, currying is spelled as partial(),
and is contained in the functools module—this is a function that
will take another function, along with zero or more arguments to
pre-fill, and return a function of fewer arguments that operates as
the input function would when those arguments are passed to it.

The built-in functions map() and filter() are equivalent to com‐
prehensions—especially now that generator comprehensions are
available—and most Python programmers find the comprehension
versions more readable. For example, here are some (almost) equiv‐
alent pairs:

33

Classic "FP-style"
transformed = map(tranformation, iterator)
Comprehension
transformed = (transformation(x) for x in iterator)

Classic "FP-style"
filtered = filter(predicate, iterator)
Comprehension
filtered = (x for x in iterator if predicate(x))

The function functools.reduce() is very general, very powerful,
and very subtle to use to its full power. It takes successive items of an
iterable, and combines them in some way. The most common use
case for reduce() is probably covered by the built-in sum(), which
is a more compact spelling of:

from functools import reduce
total = reduce(operator.add, it, 0)
total = sum(it)

It may or may not be obvious that map() and filter() are also a
special cases of reduce(). That is:

>>> add5 = lambda n: n+5
>>> reduce(lambda l, x: l+[add5(x)], range(10), [])
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
>>> # simpler: map(add5, range(10))
>>> isOdd = lambda n: n%2
>>> reduce(lambda l, x: l+[x] if isOdd(x) else l, range(10),
[])
[1, 3, 5, 7, 9]
>>> # simpler: filter(isOdd, range(10))

These reduce() expressions are awkward, but they also illustrate
how powerful the function is in its generality: anything that can be
computed from a sequence of successive elements can (if awk‐
wardly) be expressed as a reduction.

There are a few common higher-order functions that are not among
the “batteries included” with Python, but that are very easy to create
as utilities (and are included with many third-party collections of
functional programming tools). Different libraries—and other pro‐
gramming languages—may use different names for the utility func‐
tions I describe, but analogous capabilities are widespread (as are
the names I choose).

34 | Higher-Order Functions

Utility Higher-Order Functions
A handy utility is compose(). This is a function that takes a sequence
of functions and returns a function that represents the application of
each of these argument functions to a data argument:

def compose(*funcs):
 """Return a new function s.t.
 compose(f,g,...)(x) == f(g(...(x)))"""
 def inner(data, funcs=funcs):
 result = data
 for f in reversed(funcs):
 result = f(result)
 return result
 return inner

>>> times2 = lambda x: x*2
>>> minus3 = lambda x: x-3
>>> mod6 = lambda x: x%6
>>> f = compose(mod6, times2, minus3)
>>> all(f(i)==((i-3)*2)%6 for i in range(1000000))
True

For these one-line math operations (times2, minus3, etc.), we could
have simply written the underlying math expression at least as
easily; but if the composite calculations each involved branching,
flow control, complex logic, etc., this would not be true.

The built-in functions all() and any() are useful for asking
whether a predicate holds of elements of an iterable. But it is also
nice to be able to ask whether any/all of a collection of predicates
hold for a particular data item in a composable way. We might
implement these as:

all_pred = lambda item, *tests: all(p(item) for p in tests)
any_pred = lambda item, *tests: any(p(item) for p in tests)

To show the use, let us make a few predicates:

>>> is_lt100 = partial(operator.ge, 100) # less than 100?
>>> is_gt10 = partial(operator.le, 10) # greater than 10?
>>> from nums import is_prime # implemented elsewhere
>>> all_pred(71, is_lt100, is_gt10, is_prime)
True
>>> predicates = (is_lt100, is_gt10, is_prime)
>>> all_pred(107, *predicates)
False

The library toolz has what might be a more general version of this
called juxt() that creates a function that calls several functions with

Utility Higher-Order Functions | 35

the same arguments and returns a tuple of results. We could use
that, for example, to do:

>>> from toolz.functoolz import juxt
>>> juxt([is_lt100, is_gt10, is_prime])(71)
(True, True, True)
>>> all(juxt([is_lt100, is_gt10, is_prime])(71))
True
>>> juxt([is_lt100, is_gt10, is_prime])(107)
(False, True, True)

The utility higher-order functions shown here are just a small selec‐
tion to illustrate composability. Look at a longer text on functional
programming—or, for example, read the Haskell prelude—for many
other ideas on useful utility higher-order-functions.

The operator Module
As has been shown in a few of the examples, every operation that
can be done with Python’s infix and prefix operators corresponds to
a named function in the operator module. For places where you
want to be able to pass a function performing the equivalent of some
syntactic operation to some higher-order function, using the name
from operator is faster and looks nicer than a corresponding
lambda. For example:

Compare ad hoc lambda with `operator` function
sum1 = reduce(lambda a, b: a+b, iterable, 0)
sum2 = reduce(operator.add, iterable, 0)
sum3 = sum(iterable) # The actual Pythonic way

The functools Module
The obvious place for Python to include higher-order functions is in
the functools module, and indeed a few are in there. However,
there are surprisingly few utility higher-order functions in that
module. It has gained a few interesting ones over Python versions,
but core developers have a resistence to going in the direction of a
full functional programming language. On the other hand, as we
have seen in a few example above, many of the most useful higher-
order functions only take a few lines (sometimes a single line) to
write yourself.

Apart from reduce(), which is discussed at the start of this chapter,
the main facility in the module is partial(), which has also been

36 | Higher-Order Functions

https://hackage.haskell.org/package/base-4.8.0.0/docs/Prelude.html

mentioned. This operation is called “currying” (after Haskell Curry)
in many languages. There are also some examples of using par
tial() discussed above.

The remainder of the functools module is generally devoted to use‐
ful decorators, which is the topic of the next section.

Decorators
Although it is—by design—easy to forget it, probably the most com‐
mon use of higher-order functions in Python is as decorators. A
decorator is just syntax sugar that takes a function as an argument,
and if it is programmed correctly, returns a new function that is in
some way an enhancement of the original function (or method, or
class). Just to remind readers, these two snippets of code defining
some_func and other_func are equivalent:

@enhanced
def some_func(*args):
 pass

def other_func(*args):
 pass
other_func = enhanced(other_func)

Used with the decorator syntax, of course, the higher-order function
is necessarily used at definition time for a function. For their
intended purpose, this is usually when they are best applied. But the
same decorator function can always, in principle, be used elsewhere
in a program, for example in a more dynamic way (e.g., mapping a
decorator function across a runtime-generated collection of other
functions). That would be an unusual use case, however.

Decorators are used in many places in the standard library and in
common third-party libraries. In some ways they tie in with an idea
that used to be called “aspect-oriented programming.” For example,
the decorator function asyncio.coroutine is used to mark a func‐
tion as a coroutine. Within functools the three important decorator
functions are functools.lru_cache, functools.total_ordering,
and functools.wraps. The first “memoizes” a function (i.e., it
caches the arguments passed and returns stored values rather than
performing new computation or I/O). The second makes it easier to
write custom classes that want to use inequality operators. The last
makes it easier to write new decorators. All of these are important

Decorators | 37

and worthwhile purposes, but they are also more in the spirit of
making the plumbing of Python programming easier in a general—
almost syntactic—way rather than the composable higher-order
functions this chapter focuses on.

Decorators in general are more useful when you want to poke into
the guts of a function than when you want to treat it as a pluggable
component in a flow or composition of functions, often done to
mark the purpose or capabilities of a particular function.

This report has given only a glimpse into some techniques for pro‐
gramming Python in a more functional style, and only some sugges‐
tions as to the advantages one often finds in aspiring in that direc‐
tion. Programs that use functional programming are usually shorter
than more traditional imperative ones, but much more importantly,
they are also usually both more composable and more provably cor‐
rect. A large class of difficult to debug errors in program logic are
avoided by writing functions without side effects, and even more
errors are avoided by writing small units of functionality whose
operation can be understood and tested more reliably.

A rich literature on functional programming as a general technique
—often in particular languages which are not Python—is available
and well respected. Studying one of many such classic books, some
published by O’Reilly (including very nice video training on func‐
tional programming in Python), can give readers further insight into
the nitty-gritty of functional programming techniques. Almost
everything one might do in a more purely functional language can
be done with very little adjustment in Python as well.

38 | Higher-Order Functions

About the Author
David Mertz is a director of the PSF, and chair of its Trademarks
Committee and Outreach & Education Committee. He wrote the
columns Charming Python and XML Matters for IBM developer‐
Works and the Addison-Wesley book Text Processing in Python, has
spoken at multiple OSCONs and PyCons, and was invited to be a
keynote speaker at PyCon India, PyCon UK, PyCon ZA, and PyCon
Belarus.

In the distant past, David spent some time as a university professor,
teaching in areas far removed from computer programming, but
gained some familiarity with the vicissitudes of pedagogy.

Since 2008, David has worked with folks who have built the world’s
fastest supercomputer for performing molecular dynamics. He is
pleased to find Python becoming the default high-level language for
most scientific computing projects.

	Copyright
	Table of Contents
	Preface
	What Is Functional Programming?
	Beyond the Standard Library
	Resources
	A Stylistic Note

	Chapter 1. (Avoiding) Flow Control
	Encapsulation
	Comprehensions
	Generators
	Dicts and Sets

	Recursion
	Eliminating Loops
	Eliminating Recursion

	Chapter 2. Callables
	Named Functions and Lambdas
	Closures and Callable Instances
	Methods of Classes
	Accessors and Operators
	Static Methods of Instances
	Generator Functions

	Multiple Dispatch
	Many Branches
	Delegating to the Object
	Pattern Matching
	Predicate-Based Dispatch

	Chapter 3. Lazy Evaluation
	The Iterator Protocol
	Module: itertools
	Chaining Iterables

	Chapter 4. Higher-Order Functions
	Utility Higher-Order Functions
	The operator Module
	The functools Module
	Decorators

