
HANDBOOK

Bjarne Däcker
Robert Virding

Erlang Handbook
by Bjarne Däcker and Robert Virding

Revision:
Tue Dec 10 02:07:20 2013 +0000

Latest version of this handbook can be found at:
http://opensource.erlang-solutions.com/erlang-handbook

Editor
Omer Kilic

Contributors
The list of contributors can be found on the project repository.

Conventions
Syntax specifications are set using this monotype font. Square brackets ([]) enclose optional parts. Terms
beginning with an uppercase letter like Integer shall then be replaced by some suitable value. Terms beginning
with a lowercase letter like end are reserved words in Erlang. A vertical bar (|) separates alternatives, like
Integer | Float.

Errata and Improvements
This is a live document so please file corrections and suggestions for improvement about the content using the
issue tracker at https://github.com/esl/erlang-handbook. You may also fork this repository and send a
pull request with your suggested fixes and improvements. New revisions of this document will be published
after major corrections.

This text is made available under a Creative Commons Attribution-ShareAlike 3.0 License. You are free to
copy, distribute and transmit it under the license terms defined at http://creativecommons.org/licenses/
by-sa/3.0

http://opensource.erlang-solutions.com/erlang-handbook
https://github.com/esl/erlang-handbook/graphs/contributors
https://github.com/esl/erlang-handbook
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0

Contents

1 Background, or Why Erlang is that it is 5

2 Structure of an Erlang program 6
2.1 Module syntax . 6
2.2 Module attributes . 6

2.2.1 Pre-defined module attributes . 6
2.2.2 Macro and record definitions . 7
2.2.3 File inclusion . 7

2.3 Comments . 8
2.4 Character Set . 8
2.5 Reserved words . 9

3 Data types (terms) 10
3.1 Unary data types . 10

3.1.1 Atoms . 10
3.1.2 Booleans . 10
3.1.3 Integers . 10
3.1.4 Floats . 11
3.1.5 References . 11
3.1.6 Ports . 11
3.1.7 Pids . 11
3.1.8 Funs . 11

3.2 Compound data types . 11
3.2.1 Tuples . 11
3.2.2 Records . 12
3.2.3 Lists . 12
3.2.4 Strings . 13
3.2.5 Binaries . 13

3.3 Escape sequences . 14
3.4 Type conversions . 14

4 Pattern Matching 16
4.1 Variables . 16
4.2 Pattern Matching . 17

4.2.1 Match operator (=) in patterns . 17
4.2.2 String prefix in patterns . 17

2

3

4.2.3 Expressions in patterns . 18
4.2.4 Matching binaries . 18

5 Functions 19
5.1 Function definition . 19
5.2 Function calls . 20
5.3 Expressions . 20

5.3.1 Term comparisons . 21
5.3.2 Arithmetic expressions . 21
5.3.3 Boolean expressions . 22
5.3.4 Short-circuit boolean expressions . 22
5.3.5 Operator precedences . 22

5.4 Compound expressions . 23
5.4.1 If . 23
5.4.2 Case . 23
5.4.3 List comprehensions . 24

5.5 Guard sequences . 24
5.6 Tail recursion . 25
5.7 Funs . 26
5.8 BIFs — Built-in functions . 26

6 Processes 28
6.1 Process creation . 28
6.2 Registered processes . 28
6.3 Process communication . 29

6.3.1 Send . 29
6.3.2 Receive . 29
6.3.3 Receive with timeout . 30

6.4 Process termination . 31
6.5 Process links . 31

6.5.1 Error handling between processes . 31
6.5.2 Sending exit signals . 31
6.5.3 Receiving exit signals . 31

6.6 Monitors . 32
6.7 Process priorities . 32
6.8 Process dictionary . 32

7 Error handling 33
7.1 Exception classes and error reasons . 33
7.2 Catch and throw . 34
7.3 Try . 35

8 Distributed Erlang 36
8.1 Nodes . 36
8.2 Node connections . 36
8.3 Hidden nodes . 37
8.4 Cookies . 37
8.5 Distribution BIFs . 37
8.6 Distribution command line flags . 38
8.7 Distribution modules . 38

9 Ports and Port Drivers 39
9.1 Port Drivers . 39
9.2 Port BIFs . 39

4

10 Code loading 41

11 Macros 42
11.1 Defining and using macros . 42
11.2 Predefined macros . 43
11.3 Flow Control in Macros . 43
11.4 Stringifying Macro Arguments . 43

12 Further Reading and Resources 45

1
Background, or Why Erlang is that it is

Erlang is the result of a project at Ericsson’s Computer Science Laboratory to improve the programming of
telecommunication applications. A critical requirement was supporting the characteristics of such applica-
tions, that include:

• Massive concurrency

• Fault-tolerance

• Isolation

• Dynamic code upgrading at runtime

• Transactions

Throughout the whole of Erlang’s history the development process has been extremely pragmatic. The
characteristics and properties of the types of systems in which Ericsson were interested drove Erlang’s de-
velopment. These properties were considered to be so fundamental that it was decided to build support for
them into the language itself, rather than in libraries. Because of the pragmatic development process, rather
than a result of prior planning, Erlang “became” a functional language — since the features of functional
languages fitted well with the properties of the systems being developed.

5

2
Structure of an Erlang program

2.1 Module syntax

An Erlang program is made up of modules where each module is a text file with the extension .erl. For
small programs, all modules typically reside in one directory. A module consists of module attributes and
function definitions.

-module(demo).
-export([double/1]).

double(X) -> times(X, 2).

times(X, N) -> X * N.

The above module demo consists of the function times/2 which is local to the module and the function
double/1 which is exported and can be called from outside the module.

demo:double(10) ⇒ 20 (the arrow ⇒ should be read as “resulting in”)

double/1 means the function “double” with one argument. A function double/2 taking two arguments is
regarded as a different function. The number of arguments is called the arity of the function.

2.2 Module attributes

A module attribute defines a certain property of a module and consists of a tag and a value:

-Tag(Value).

Tag must be an atom, while Value must be a literal term (see chapter 3). Any module attribute can
be specified. The attributes are stored in the compiled code and can be retrieved by calling the function
Module:module_info(attributes).

2.2.1 Pre-defined module attributes

Pre-defined module attributes must be placed before any function declaration.

• -module(Module).

6

CHAPTER 2. STRUCTURE OF AN ERLANG PROGRAM 7

This attribute is mandatory and must be specified first. It defines the name of the module. The name
Module, an atom (see section 3.1.1), should be the same as the filename without the ‘.erl’ extension.

• -export([Func1/Arity1, ..., FuncN/ArityN]).

This attribute specifies which functions in the module that can be called from outside the module. Each
function name FuncX is an atom and ArityX an integer.

• -import(Module,[Func1/Arity1, ..., FuncN/ArityN]).

This attribute indicates a Module from which a list of functions are imported. For example:

-import(demo, [double/1]).

This means that it is possible to write double(10) instead of the longer demo:double(10) which can
be impractical if the function is used frequently.

• -compile(Options).

Compiler options.

• -vsn(Vsn).

Module version. If this attribute is not specified, the version defaults to the checksum of the module.

• -behaviour(Behaviour).

This attribute either specifies a user defined behaviour or one of the OTP standard behaviours gen_server,
gen_fsm, gen_event or supervisor. The spelling “behavior” is also accepted.

2.2.2 Macro and record definitions

Records and macros are defined in the same way as module attributes:

-record(Record,Fields).

-define(Macro,Replacement).

Records and macro definitions are also allowed between functions, as long as the definition comes before its
first use. (About records see section 3.2.2 and about macros see chapter 11.)

2.2.3 File inclusion

File inclusion is specified in the same way as module attributes:

-include(File).

-include_lib(File).

File is a string that represents a file name. Include files are typically used for record and macro definitions
that are shared by several modules. By convention, the extension .hrl is used for include files.

-include("my_records.hrl").
-include("incdir/my_records.hrl").
-include("/home/user/proj/my_records.hrl").

If File starts with a path component $Var, then the value of the environment variable Var (returned by
os:getenv(Var)) is substituted for $Var.

CHAPTER 2. STRUCTURE OF AN ERLANG PROGRAM 8

-include("$PROJ_ROOT/my_records.hrl").

include_lib is similar to include, but the first path component is assumed to be the name of an application.

-include_lib("kernel/include/file.hrl").

The code server uses code:lib_dir(kernel) to find the directory of the current (latest) version of kernel,
and then the subdirectory include is searched for the file file.hrl.

2.3 Comments

Comments may appear anywhere in a module except within strings and quoted atoms. A comment begins
with the percentage character (%) and covers the rest of the line but not the end-of-line. The terminating
end-of-line has the effect of a blank.

2.4 Character Set

Erlang handles the full Latin-1 (ISO-8859-1) character set. Thus all Latin-1 printable characters can be used
and displayed without the escape backslash. Atoms and variables can use all Latin-1 characters.

Character classes
Octal Decimal Class
40 - 57 32 - 47 ! " # $ % & ’ / Punctuation

characters
60 - 71 48 - 57 0 - 9 Decimal digits
72 - 100 58 - 64 : ; < = > @ Punctuation

characters
101 - 132 65 - 90 A - Z Uppercase letters
133 - 140 91 - 96 [\] ^ _ ‘ Punctuation

characters
141 - 172 97 - 122 a - z Lowercase letters
173 - 176 123 - 126 { | } ~ Punctuation

characters
200 - 237 128 - 159 Control characters
240 - 277 160 - 191 - ¿ Punctuation

characters
300 - 326 192 - 214 À - Ö Uppercase letters
327 215 × Punctuation

character
330 - 336 216 - 222 Ø - Þ Uppercase letters
337 - 366 223 - 246 ß - ö Lowercase letters
367 247 ÷ Punctuation

character
370 - 377 248 - 255 ø - ÿ Lowercase letters

CHAPTER 2. STRUCTURE OF AN ERLANG PROGRAM 9

2.5 Reserved words

The following are reserved words in Erlang:

after and andalso band begin bnot bor bsl bsr bxor case catch cond
div end fun if let not of or orelse receive rem try when xor

3
Data types (terms)

3.1 Unary data types

3.1.1 Atoms

An atom is a symbolic name, also known as a literal. Atoms begin with a lower-case letter, and may contain
alphanumeric characters, underscores (_) or at-signs (@). Alternatively atoms can be specified by enclosing
them in single quotes (’), necessary when they start with an uppercase character or contain characters other
than underscores and at-signs. For example:

hello

phone_number

’Monday’

’phone number’

’Anything inside quotes \n\012’ (see section 3.3)

3.1.2 Booleans

There is no boolean data type in Erlang. The atoms true and false are used instead.

2 =< 3 ⇒ true
true or false ⇒ true

3.1.3 Integers

In addition to the normal way of writing integers Erlang provides further notations. $Char is the Latin-1
numeric value of the character ‘Char’ (that may be an escape sequence) and Base#Value is an integer in base
Base, which must be an integer in the range 2..36.

42 ⇒ 42
$A ⇒ 65
$\n ⇒ 10 (see section 3.3)
2#101 ⇒ 5
16#1f ⇒ 31

10

CHAPTER 3. DATA TYPES (TERMS) 11

3.1.4 Floats

A float is a real number written Num[eExp] where Num is a decimal number between 0.01 and 10000 and Exp
(optional) is a signed integer specifying the power-of-10 exponent. For example:

2.3e-3 ⇒ 2.30000e-3 (corresponding to 2.3*10-3)

3.1.5 References

A reference is a term which is unique in an Erlang runtime system, created by the built-in function
make_ref/0. (For more information on built-in functions, or BIF s, see section 5.8.)

3.1.6 Ports

A port identifier identifies a port (see chapter 9).

3.1.7 Pids

A process identifier, pid, identifies a process (see chapter 6).

3.1.8 Funs

A fun identifies a functional object (see section 5.7).

3.2 Compound data types

3.2.1 Tuples

A tuple is a compound data type that holds a fixed number of terms enclosed within curly braces.

{Term1,...,TermN}

Each TermX in the tuple is called an element. The number of elements is called the size of the tuple.

BIFs to manipulate tuples
size(Tuple) Returns the size of Tuple
element(N,Tuple) Returns the Nth element in Tuple
setelement(N,Tuple,Expr) Returns a new tuple copied from Tuple

except that the Nth element is replaced by
Expr

P = {adam, 24, {july, 29}} ⇒ P is bound to {adam, 24, {july, 29}}
element(1, P) ⇒ adam
element(3, P) ⇒ {july,29}
P2 = setelement(2, P, 25) ⇒ P2 is bound to {adam, 25, {july, 29}}
size(P) ⇒ 3
size({}) ⇒ 0

CHAPTER 3. DATA TYPES (TERMS) 12

3.2.2 Records

A record is a named tuple with named elements called fields. A record type is defined as a module attribute,
for example:

-record(Rec, {Field1 [= Value1],
...
FieldN [= ValueN]}).

Rec and Fields are atoms and each FieldX can be given an optional default ValueX. This definition may
be placed amongst the functions of a module, but only before it is used. If a record type is used by several
modules it is advisable to put it in a separate file for inclusion.

A new record of type Rec is created using an expression like this:

#Rec{Field1=Expr1, ..., FieldK=ExprK [, _=ExprL]}

The fields need not be in the same order as in the record definition. Fields omitted will get their respective
default values. If the final clause is used, omitted fields will get the value ExprL. Fields without default values
and that are omitted will have an undefined value.

The value of a field is retrieved using the expression “Variable#Rec.Field”.

-module(employee).
-export([new/2]).
-record(person, {name, age, employed=erixon}).

new(Name, Age) -> #person{name=Name, age=Age}.

The function employee:new/2 can be used in another module which must also include the same record
definition of person.

{P = employee:new(ernie,44)} ⇒ {person, ernie, 44, erixon}
P#person.age ⇒ 44
P#person.employed ⇒ erixon

When working with records in the Erlang shell, the functions rd(RecordName, RecordDefinition) and
rr(Module) can be used to define and load record definitions. Refer to the Erlang Reference Manual for
more information.

3.2.3 Lists

A list is a compound data type that holds a variable number of terms enclosed within square brackets.

[Term1,...,TermN]

Each term TermX in the list is called an element. The length of a list refers to the number of elements.
Common in functional programming, the first element is called the head of the list and the remainder (from
the 2nd element onwards) is called the tail of the list. Note that individual elements within a list do not have
to have the same type, although it is common (and perhaps good) practice to do so — where mixed types
are involved, records are more commonly used.

BIFs to manipulate lists
length(List) Returns the length of List
hd(List) Returns the 1st (head) element of List
tl(List) Returns List with the 1st element removed (tail)

CHAPTER 3. DATA TYPES (TERMS) 13

The vertical bar operator (|) separates the leading elements of a list (one or more) from the remainder. For
example:

[H | T] = [1, 2, 3, 4, 5] ⇒ H=1 and T=[2, 3, 4, 5]
[X, Y | Z] = [a, b, c, d, e] ⇒ X=a, Y=b and Z=[c, d, e]

Implicitly a list will end with an empty list, i.e. [a, b] is the same as [a, b | []]. A list looking like [a,
b | c] is badly formed and should be avoided (because the atom ’c’ is not a list). Lists lend themselves
naturally to recursive functional programming. For example, the following function ‘sum’ computes the sum
of a list, and ‘double’ multiplies each element in a list by 2, constructing and returning a new list as it goes.

sum([]) -> 0;
sum([H | T]) -> H + sum(T).

double([]) -> [];
double([H | T]) -> [H*2 | double(T)].

The above definitions introduce pattern matching, described in chapter 4. Patterns of this form are common
in recursive programming, explicitly providing a “base case” (for the empty list in these examples).

For working with lists, the operator ++ joins two lists together (appends the second argument to the first)
and returns the resulting list. The operator – produces a list that is a copy of its first argument, except that
for each element in the second argument, the first occurrence of this element (if any) in the resulting list is
removed.

[1,2,3] ++ [4,5] ⇒ [1,2,3,4,5] [1,2,3,2,1,2] – [2,1,2] ⇒ [3,1,2]

A collection of list processing functions can be found in the STDLIB module lists.

3.2.4 Strings

Strings are character strings enclosed within double quotes but are, in fact, stored as lists of characters.

"abcdefghi" is the same as [97,98,99,100,101,102,103,104,105]

"" is the same as []

Two adjacent strings will be concatenated into one at compile-time and do not incur any runtime overhead.

"string" "42" ⇒ "string42"

3.2.5 Binaries

A binary is a chunk of untyped memory by default a sequence of 8-bit bytes.

<<Elem1,...,ElemN>>

Each ElemX is specified as Value[:Size][/TypeSpecifierList].

Element specification
Value Size TypeSpecifierList
Should evaluate
to an integer,
float or binary

Should evaluate to
an integer

A sequence of optional type
specifiers, in any order, separated
by hyphens (-)

CHAPTER 3. DATA TYPES (TERMS) 14

Type specifiers
Type integer | float | binary Default is integer
Signedness signed | unsigned Default is unsigned
Endianness big | little | native CPU dependent. Default is big
Unit unit:IntegerLiteral Allowed range is 1..256. Default

is 1 for integer and float, and 8
for binary

The value of Size multiplied by the unit gives the number of bits for the segment. Each segment can consist
of zero or more bits but the total number of bits must be a multiple of 8, or a badarg run-time error will
occur. Also, a segment of type binary must have a size evenly divisible by 8.

Binaries cannot be nested.

<<1, 17, 42>> % <<1, 17, 42>>
<<"abc">> % <<97, 98, 99>> (The same as <<$a, $b, $c>>)
<<1, 17, 42:16>> % <<1,17,0,42>>
<<>> % <<>>
<<15:8/unit:10>> % <<0,0,0,0,0,0,0,0,0,15>>
<<(-1)/unsigned>> % <<255>>

3.3 Escape sequences

Escape sequences are allowed in strings and quoted atoms.

Escape sequences
\b Backspace
\d Delete
\e Escape
\f Form feed
\n New line
\r Carriage return
\s Space
\t Tab
\v Vertical tab
\XYZ, \XY, \X Character with octal representation XYZ, XY or X
\^A .. \^Z Control A to control Z
\^a .. \^z Control A to control Z
\’ Single quote
\" Double quote
\\ Backslash

3.4 Type conversions

There are a number of built-in functions for type conversion:

CHAPTER 3. DATA TYPES (TERMS) 15

Type conversions
atom integer float pid fun tuple list binary

atom - - - - - X X
integer - X - - - X X
float - X - - - X X
pid - - - - - X X
fun - - - - - X X
tuple - - - - - X X
list X X X X X X X
binary X X X X X X X

The BIF float/1 converts integers to floats. The BIFs round/1 and trunc/1 convert floats to integers.

The BIFs Type_to_list/1 and list_to_Type/1 convert to and from lists.

The BIFs term_to_binary/1 and binary_to_term/1 convert to and from binaries.

atom_to_list(hello) % "hello"
list_to_atom("hello") % hello
float_to_list(7.0) % "7.00000000000000000000e+00"
list_to_float("7.000e+00") % 7.00000
integer_to_list(77) % "77"
list_to_integer("77") % 77
tuple_to_list({a, b ,c}) % [a,b,c]
list_to_tuple([a, b, c]) % {a,b,c}
pid_to_list(self()) % "<0.25.0>"
term_to_binary(<<17>>) % <<131,109,0,0,0,1,17>>
term_to_binary({a, b ,c}) % <<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>) % {a,b,c}
term_to_binary(math:pi()) % <<131,99,51,46,49,52,49,53,57,50,54,53,51,...>>

4
Pattern Matching

4.1 Variables

Variables are introduced as arguments to a function or as a result of pattern matching. Variables begin with
an uppercase letter or underscore (_) and may contain alphanumeric characters, underscores and at-signs
(@). Variables can only be bound (assigned) once.

Abc
A_long_variable_name
AnObjectOrientatedVariableName
_Height

An anonymous variable is denoted by a single underscore (_) and can be used when a variable is required
but its value can be ignored.

[H|_] = [1,2,3] % H=1 and the rest is ignored

Variables beginning with underscore like _Height are normal variables, not anonymous. They are however
ignored by the compiler in the sense that they will not generate any warnings for unused variables. Thus it
is possible to write:

member(_Elem, []) ->
false.

instead of:

member(_, []) ->
false.

which can make for more readable code.

The scope for a variable is its function clause. Variables bound in a branch of an if, case, or receive
expression must be bound in all branches to have a value outside the expression, otherwise they will be
regarded as unsafe (possibly undefined) outside the expression.

16

CHAPTER 4. PATTERN MATCHING 17

4.2 Pattern Matching

A pattern has the same structure as a term but may contain new unbound variables.

Name1
[H|T]
{error,Reason}

Patterns occur in function heads, case, receive, and try expressions and in match operator (=) expressions.
Patterns are evaluated through pattern matching against an expression and this is how variables are defined
and bound.

Pattern = Expr

Both sides of the expression must have the same structure. If the matching succeeds, all unbound variables,
if any, in the pattern become bound. If the matching fails, a badmatch run-time error will occur.

> {A, B} = {answer, 42}.
{answer,42}
> A.
answer
> B.
42

4.2.1 Match operator (=) in patterns

If Pattern1 and Pattern2 are valid patterns, then the following is also a valid pattern:

Pattern1 = Pattern2

The = introduces an alias which when matched against an expression, both Pattern1 and Pattern2 are
matched against it. The purpose of this is to avoid the reconstruction of terms.

foo({connect,From,To,Number,Options}, To) ->
Signal = {connect,From,To,Number,Options},
fox(Signal),
...;

which can be written more efficiently as:

foo({connect,From,To,Number,Options} = Signal, To) ->
fox(Signal),
...;

4.2.2 String prefix in patterns

When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

which is equivalent to and easier to read than:

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

CHAPTER 4. PATTERN MATCHING 18

You can only use strings as prefix expressions; patterns such as Str ++ "postfix" are not allowed.

4.2.3 Expressions in patterns

An arithmetic expression can be used within a pattern, provided it only uses numeric or bitwise operators
and its value can be evaluated to a constant at compile-time.

case {Value, Result} of
{?Threshold+1, ok} -> ... % ?Threshold is a macro

4.2.4 Matching binaries

Bin = <<1, 2, 3>> % <<1,2,3>> All elements are 8-bit bytes
<<A, B, C>> = Bin % A=1, B=2 and C=3
<<D:16, E>> = Bin % D=258 and E=3
<<F, G/binary>> = Bin % F=1 and G=<<2,3>>

In the last line, the variable G of unspecified size matches the rest of the binary Bin.

Always put a space between (=) and (<<) so as to avoid confusion with the (=<) operator.

5
Functions

5.1 Function definition

A function is defined as a sequence of one or more function clauses. The function name is an atom.

Func(Pattern11,...,Pattern1N) [when GuardSeq1] -> Body1;
...;
...;

Func(PatternK1,...,PatternKN) [when GuardSeqK] -> BodyK.

The function clauses are separated by semicolons (;) and terminated by full stop (.). A function clause
consists of a clause head and a clause body separated by an arrow (->). A clause head consists of the
function name (an atom), arguments within parentheses and an optional guard sequence beginning with the
keyword when. Each argument is a pattern. A clause body consists of a sequence of expressions separated
by commas (,).

Expr1,
...,
ExprM

The number of arguments N is the arity of the function. A function is uniquely defined by the module name,
function name and arity. Two different functions in the same module with different arities may have the same
name. A function Func in Module with arity N is often denoted as Module:Func/N.

-module(mathStuff).
-export([area/1]).

area({square, Side}) -> Side * Side;
area({circle, Radius}) -> math:pi() * Radius * Radius;
area({triangle, A, B, C}) ->

S = (A + B + C)/2,
math:sqrt(S*(S-A)*(S-B)*(S-C)).

19

CHAPTER 5. FUNCTIONS 20

5.2 Function calls

A function is called using:

[Module:]Func(Expr1, ..., ExprN)

Module evaluates to a module name and Func to a function name or a fun. When calling a function in
another module, the module name must be provided and the function must be exported. This is referred to
as a fully qualified function name.

lists:keysearch(Name, 1, List)

The module name can be omitted if Func evaluates to the name of a local function, an imported function, or
an auto-imported BIF. In such cases, the function is called using an implicitly qualified function name.

Before calling a function the arguments ExprX are evaluated. If the function cannot be found, an undef
run-time error will occur. Next the function clauses are scanned sequentially until a clause is found such that
the patterns in the clause head can be successfully matched against the given arguments and that the guard
sequence, if any, is true. If no such clause can be found, a function_clause run-time error will occur.

If a matching clause is found, the corresponding clause body is evaluated, i.e. the expressions in the body
are evaluated sequentially and the value of the last expression is returned.

The fully qualified function name must be used when calling a function with the same name as a BIF (built-in
function, see section 5.8). The compiler does not allow defining a function with the same name as an imported
function. When calling a local function, there is a difference between using the implicitly or fully qualified
function name, as the latter always refers to the latest version of the module (see chapter 10).

5.3 Expressions

An expression is either a term or the invocation of an operator, for example:

Term
op Expr
Expr1 op Expr2
(Expr)
begin

Expr1,
...,
ExprM % no comma (,) before end

end

There are both unary and binary operators. The simplest form of expression is a term, i.e. an integer, float,
atom, string, list or tuple and the return value is the term itself. An expression may contain macro or record
expressions which will expanded at compile time.

Parenthesised expressions are useful to override operator precedence (see section 5.3.5):

1 + 2 * 3 % 7
(1 + 2) * 3 % 9

Block expressions within begin...end can be used to group a sequence of expressions and the return value
is the value of the last expression ExprM.

CHAPTER 5. FUNCTIONS 21

All subexpressions are evaluated before the expression itself is evaluated, but the order in which subexpres-
sions are evaluated is undefined.

Most operators can only be applied to arguments of a certain type. For example, arithmetic operators can
only be applied to integers or floats. An argument of the wrong type will cause a badarg run-time error.

5.3.1 Term comparisons

Expr1 op Expr2

A term comparison returns a boolean value, in the form of atoms true or false.

Comparison operators
== Equal to =< Less than or equal to
/= Not equal to < Less than
=:= Exactly equal to >= Greater than or equal to
=/= Exactly not equal to > Greater than

1==1.0 % true
1=:=1.0 % false
1 > a % false

The arguments may be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < list < binary

Lists are compared element by element. Tuples are ordered by size, two tuples with the same size are
compared element by element. When comparing an integer and a float, the integer is first converted to a
float. In the case of =:= or =/= there is no type conversion.

5.3.2 Arithmetic expressions

op Expr
Expr1 op Expr2

An arithmetic expression returns the result after applying the operator.

Arithmetic operators
+ Unary + Integer | Float
- Unary - Integer | Float
+ Addition Integer | Float
- Subtraction Integer | Float
* Multiplication Integer | Float
/ Floating point division Integer | Float
bnot Unary bitwise not Integer
div Integer division Integer
rem Integer remainder of X/Y Integer
band Bitwise and Integer
bor Bitwise or Integer
bxor Arithmetic bitwise xor Integer
bsl Arithmetic bitshift left Integer
bsr Bitshift right Integer

CHAPTER 5. FUNCTIONS 22

+1 % 1
4/2 % 2.00000
5 div 2 % 2
5 rem 2 % 1
2#10 band 2#01 % 0
2#10 bor 2#01 % 3

5.3.3 Boolean expressions

op Expr
Expr1 op Expr2

A boolean expression returns the value true or false after applying the operator.

Boolean operators
not Unary logical not
and Logical and
or Logical or
xor Logical exclusive or

not true % false
true and false % false
true xor false % true

5.3.4 Short-circuit boolean expressions

Expr1 orelse Expr2
Expr1 andalso Expr2

These are boolean expressions where Expr2 is evaluated only if necessary. In an orelse expression Expr2
will be evaluated only if Expr1 evaluates to false. In an andalso expression Expr2 will be evaluated only if
Expr1 evaluates to true.

if A >= 0 andalso math:sqrt(A) > B -> ...

if is_list(L) andalso length(L) == 1 -> ...

5.3.5 Operator precedences

In an expression consisting of subexpressions the operators will be applied according to a defined operator
precedence order:

CHAPTER 5. FUNCTIONS 23

Operator precedence (from high to low)
:
#
Unary + - bnot not
/ * div rem band and Left associative
+ - bor bxor bsl bsr or xor Left associative
++ – Right associative
== /= =< < >= > =:= =/=
andalso
orelse
= ! Right associative
catch

The operator with the highest priority is evaluated first. Operators with the same priority are evaluated
according to their associativity. The left associative arithmetic operators are evaluated left to right:

6 + 5 * 4 - 3 / 2 ⇒ 6 + 20 - 1.5 ⇒ 26 - 1.5 ⇒ 24.5

5.4 Compound expressions

5.4.1 If

if
GuardSeq1 ->

Body1;
...;
GuardSeqN ->

BodyN % Note no semicolon (;) before end
end

The branches of an if expression are scanned sequentially until a guard sequence GuardSeq which evaluates
to true is found. The corresponding Body (sequence of expressions separated by commas) is then evaluated.
The return value of Body is the return value of the if expression.

If no guard sequence is true, an if_clause run-time error will occur. If necessary, the guard expression true
can be used in the last branch, as that guard sequence is always true (known as a “catch all”).

is_greater_than(X, Y) ->
if

X>Y ->
true;

true -> % works as an ’else’ branch
false

end

It should be noted that pattern matching in function clauses can be used to replace if cases (most of the
time). Overuse of if sentences withing function bodies is considered a bad Erlang practice.

5.4.2 Case

Case expressions provide for inline pattern matching, similar to the way in which function clauses are matched.

CHAPTER 5. FUNCTIONS 24

case Expr of
Pattern1 [when GuardSeq1] ->

Body1;
...;

PatternN [when GuardSeqN] ->
BodyN % Note no semicolon (;) before end

end

The expression Expr is evaluated and the patterns Pattern1...PatternN are sequentially matched against
the result. If a match succeeds and the optional guard sequence GuardSeqX is true, then the corresponding
BodyX is evaluated. The return value of BodyX is the return value of the case expression.

If there is no matching pattern with a true guard sequence, a case_clause run-time error will occur.

is_valid_signal(Signal) ->
case Signal of

{signal, _What, _From, _To} ->
true;

{signal, _What, _To} ->
true;

_Else -> % ’catch all’
false

end.

5.4.3 List comprehensions

List comprehensions are analogous to the setof and findall predicates in Prolog.

[Expr || Qualifier1,...,QualifierN]

Expr is an arbitrary expression, and each QualifierX is either a generator or a filter. A generator is
written as:

Pattern <- ListExpr

where ListExpr must be an expression which evaluates to a list of terms. A filter is an expression which
evaluates to true or false. Variables in list generator expressions shadow variables in the function clause
surrounding the list comprehension.

The qualifiers are evaluated from left to right, the generators creating values and the filters constraining
them. The list comprehension then returns a list where the elements are the result of evaluating Expr for
each combination of the resulting values.

> [{X, Y} || X <- [1,2,3,4,5,6], X > 4, Y <- [a,b,c]].
[{5,a},{5,b},{5,c},{6,a},{6,b},{6,c}]

5.5 Guard sequences

A guard sequence is a set of guards separated by semicolons (;). The guard sequence is true if at least
one of the guards is true.

Guard1; ...; GuardK

CHAPTER 5. FUNCTIONS 25

A guard is a set of guard expressions separated by commas (,). The guard is true if all guard expressions
evaluate to true.

GuardExpr1, ..., GuardExprN

The permitted guard expressions (sometimes called guard tests) are a subset of valid Erlang expressions,
since the evaluation of a guard expression must be guaranteed to be free of side-effects.

Valid guard expressions:
The atom true;
Other constants (terms and bound variables), are all regarded as false;
Term comparisons;
Arithmetic and boolean expressions;
Calls to the BIFs specified below.
Type test BIFs Other BIFs allowed in guards:
is_atom/1 abs(Integer | Float)
is_constant/1 float(Term)
is_integer/1 trunc(Integer | Float)
is_float/1 round(Integer | Float)
is_number/1 size(Tuple | Binary)
is_reference/1 element(N, Tuple)
is_port/1 hd(List)
is_pid/1 tl(List)
is_function/1 length(List)
is_tuple/1 self()
is_record/2 The 2nd argument is
the record name

node()

is_list/1 node(Pid | Ref |Port)
is_binary/1

A small example:

fact(N) when N>0 -> % first clause head
N * fact(N-1); % first clause body

fact(0) -> % second clause head
1. % second clause body

5.6 Tail recursion

If the last expression of a function body is a function call, a tail recursive call is performed in such a way
that no system resources (like the call stack) are consumed. This means that an infinite loop like a server
can be programmed provided it only uses tail recursive calls.

The function fact/1 above could be rewritten using tail recursion in the following manner:

fact(N) when N>1 -> fact(N, N-1);
fact(N) when N==1; N==0 -> 1.

fact(F,0) -> F; % The variable F is used as an accumulator
fact(F,N) -> fact(F*N, N-1).

CHAPTER 5. FUNCTIONS 26

5.7 Funs

A fun defines a functional object. Funs make it possible to pass an entire function, not just the function
name, as an argument. A ‘fun’ expression begins with the keyword fun and ends with the keyword end
instead of a full stop (.). Between these should be a regular function declaration, except that no function
name is specified.

fun
(Pattern11,...,Pattern1N) [when GuardSeq1] ->

Body1;
...;

(PatternK1,...,PatternKN) [when GuardSeqK] ->
BodyK

end

Variables in a fun head shadow variables in the function clause surrounding the fun but variables bound in a
fun body are local to the body. The return value of the expression is the resulting function. The expression
fun Name/N is equivalent to:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

The expression fun Module:Func/Arity is also allowed, provided that Func is exported from Module.

Fun1 = fun (X) -> X+1 end.
Fun1(2) % 3

Fun2 = fun (X) when X>=1000 -> big; (X) -> small end.
Fun2(2000) % big

Since a fun is anonymous, i.e. there is no function name in the definition of the fun, the definition of a
recursive fun has to be done in two steps. This example shows how to define the function sum(List) (see
section 3.2.3) as a fun.

Sum1 = fun ([], _Foo) -> 0;([H|T], Foo) -> H + Foo(T, Foo) end.
Sum = fun (List) -> Sum1(List, Sum1) end.
Sum([1,2,3,4,5]) % 15

The definition of Sum1 is done in a way such that it takes itself as a parameter, matched to _Foo (empty list)
or Foo, which it then calls recursively. The definition of Sum calls Sum1, also passing Sum1 as a parameter.

5.8 BIFs — Built-in functions

The built-in functions, BIFs, are implemented in the C code of the runtime system and do things that are
difficult or impossible to implement in Erlang. Most of the built-in functions belong to the module erlang
but there are also built-in functions that belong to other modules like lists and ets. The most commonly
used BIFs belonging to the module erlang are auto-imported, i.e. they do not need to be prefixed with
the module name.

CHAPTER 5. FUNCTIONS 27

Some useful BIFs
date() Returns today’s date as {Year, Month, Day}
now() Returns current time in microseconds. System

dependent
time() Returns current time as {Hour, Minute,

Second} System dependent
halt() Stops the Erlang system
processes() Returns a list of all processes currently known to

the system
process_info(Pid) Returns a dictionary containing information

about Pid
Module:module_info() Returns a dictionary containing information

about the code in Module

A dictionary is a list of {Key, Value} terms (see also section 6.8).

size({a, b, c}) % 3
atom_to_list(’Erlang’) % "Erlang"
date() % {2013,5,27}
time() % {01,27,42}

6
Processes

A process corresponds to one thread of control. Erlang permits very large numbers of concurrent processes,
each executing like it had an own virtual processor. When a process executing functionA calls another
functionB, it will wait until functionB is finished and then retrieve its result. If instead it spawns another
process executing functionB, both will continue in parallel (concurrently). functionA will not wait for
functionB and the only way they can communicate is through message passing.

Erlang processes are light-weight with a small memory footprint, fast to create and shut-down, and the
scheduling overhead is low. A process identifier, Pid, identifies a process. The BIF self/0 returns the
Pid of the calling process.

6.1 Process creation

A process is created using the BIF spawn/3.

spawn(Module, Func, [Expr1, ..., ExprN])

Module should evaluate to a module name and Func to a function name in that module. The list Expr1...ExprN
are the arguments to the function. spawn creates a new process and returns the process identifier, Pid. The
new process starts by executing:

Module:Func(Expr1, ..., ExprN)

The function Func has to be exported even if it is spawned by another function in the same module. There
are other spawn BIFs, for example spawn/4 for spawning a process on another node.

6.2 Registered processes

A process can be associated with a name. The name must be an atom and is automatically unregistered if
the process terminates. Only static (cyclic) processes should be registered.

28

CHAPTER 6. PROCESSES 29

Name registration BIFs
register(Name, Pid) Associates the atom Name with the process Pid
registered() Returns a list of names which have been

registered
whereis(Name) Returns the Pid registered under Name or

undefined if the name is not registered

6.3 Process communication

Processes communicate by sending and receiving messages. Messages are sent using the send operator (!)
and are received using receive. Message passing is asynchronous and reliable, i.e. the message is guaranteed
to eventually reach the recipient, provided that the recipient exists.

6.3.1 Send

Pid ! Expr

The send (!) operator sends the value of Expr as a message to the process specified by Pid where it will be
placed last in its message queue. The value of Expr is also the return value of the (!) expression. Pid must
evaluate to a process identifier, a registered name or a tuple {Name,Node}, where Name is a registered process
at Node (see chapter 8). The message sending operator (!) never fails, even if it addresses a non-existent
process.

6.3.2 Receive

receive
Pattern1 [when GuardSeq1] ->

Body1;
...
PatternN [when GuardSeqN] ->

BodyN % Note no semicolon (;) before end
end

This expression receives messages sent to the process using the send operator (!). The patterns PatternX
are sequentially matched against the first message in time order in the message queue, then the second and
so on. If a match succeeds and the optional guard sequence GuardSeqX is true, then the message is removed
from the message queue and the corresponding BodyX is evaluated. It is the order of the pattern clauses that
decides the order in which messages will be received prior to the order in which they arrive. This is called
selective receive. The return value of BodyX is the return value of the receive expression.

receive never fails. The process may be suspended, possibly indefinitely, until a message arrives that matches
one of the patterns and with a true guard sequence.

CHAPTER 6. PROCESSES 30

wait_for_onhook() ->
receive

onhook ->
disconnect(),
idle();

{connect, B} ->
B ! {busy, self()},
wait_for_onhook()

end.

6.3.3 Receive with timeout

receive
Pattern1 [when GuardSeq1] ->

Body1;
...;

PatternN [when GuardSeqN] ->
BodyN

after
ExprT ->

BodyT
end

ExprT should evaluate to an integer between 0 and 16#ffffffff (the value must fit in 32 bits). If no matching
message has arrived within ExprT milliseconds, then BodyT will be evaluated and its return value becomes
the return value of the receive expression.

wait_for_onhook() ->
receive

onhook ->
disconnect(),
idle();

{connect, B} ->
B ! {busy, self()},
wait_for_onhook()

after
60000 ->

disconnect(),
error()

end.

A receive...after expression with no branches can be used to implement simple timeouts.

receive
after

ExprT ->
BodyT

end

CHAPTER 6. PROCESSES 31

Two special cases for the timeout value ExprT
infinity This is equivalent to not using a timeout and can be useful for

timeout values that are calculated at run-time
0 If there is no matching message in the mailbox, the timeout

will occur immediately

6.4 Process termination

A process always terminates with an exit reason which may be any term. If a process terminates normally,
i.e. it has run to the end of its code, then the reason is the atom normal. A process can terminate itself by
calling one of the following BIFs.

exit(Reason)

erlang:error(Reason)

erlang:error(Reason, Args)

A process terminates with the exit reason {Reason,Stack} when a run-time error occurs.

A process may also be terminated if it receives an exit signal with a reason other than normal (see section
6.5.3).

6.5 Process links

Two processes can be linked to each other. Links are bidirectional and there can only be one link be-
tween two distinct processes (unique Pids). A process with Pid1 can link to a process with Pid2 using the
BIF link(Pid2). The BIF spawn_link(Module, Func, Args) spawns and links a process in one atomic
operation.

A link can be removed using the BIF unlink(Pid).

6.5.1 Error handling between processes

When a process terminates it will send exit signals to all processes that it is linked to. These in turn will
also be terminated or handle the exit signal in some way. This feature can be used to build hierarchical
program structures where some processes are supervising other processes, for example restarting them if they
terminate abnormally.

6.5.2 Sending exit signals

A process always terminates with an exit reason which is sent as an exit signal to all linked processes. The
BIF exit(Pid, Reason) sends an exit signal with the reason Reason to Pid, without affecting the calling
process.

6.5.3 Receiving exit signals

If a process receives an exit signal with an exit reason other than normal it will also be terminated, and
will send exit signals with the same exit reason to its linked processes. An exit signal with reason normal is
ignored. This behaviour can be changed using the BIF process_flag(trap_exit, true).

CHAPTER 6. PROCESSES 32

The process is then able to trap exits. This means that an exit signal will be transformed into a message
{’EXIT’, FromPid, Reason} which is put into the process’s mailbox and can be handled by the process like
a regular message using receive.

However, a call to the BIF exit(Pid, kill) unconditionally terminates the process Pid regardless whether
it is able to trap exit signals or not.

6.6 Monitors

A process Pid1 can create a monitor for Pid2 using the BIF:

erlang:monitor(process, Pid2)

which returns a reference Ref. If Pid2 terminates with exit reason Reason, a message as follows will be sent
to Pid1:

{’DOWN’, Ref, process, Pid2, Reason}

If Pid2 does not exist, the ’DOWN’ message is sent immediately with Reason set to noproc. Monitors are
unidirectional in that if Pid1 monitors Pid2 then it will receive a message when Pid2 dies but Pid2 will not
receive a message when Pid1 dies. Repeated calls to erlang:monitor(process, Pid) will create several,
independent monitors and each one will be sent a ’DOWN’ message when Pid terminates.

A monitor can be removed by calling erlang:demonitor(Ref). It is possible to create monitors for processes
with registered names, also at other nodes.

6.7 Process priorities

The BIF process_flag(priority, Prio) defines the priority of the current process. Prio may have the
value normal, which is the default, low, high or max.

Modifying a process’s priority is discouraged and should only be done in special circumstances. A problem
that requires changing process priorities can generally be solved by another approach.

6.8 Process dictionary

Each process has its own process dictionary which is a list of {Key, Value} terms.

Process dictionary BIFs
put(Key, Value) Saves the Value under the Key or replaces an older value
get(Key) Retrieves the value stored under Key or undefined
get() Returns the entire process dictionary as a list of {Key,

Value} terms
get_keys(Value) Returns a list of keys that have the value Value
erase(Key) Deletes {Key, Value}, if any, and returns Key
erase() Returns the entire process dictionary and deletes it

Process dictionaries could be used to keep global variables within an application, but the extensive use of
them for this is usually regarded as poor programming style.

7
Error handling

This chapter deals with error handling within a process. Such errors are known as exceptions.

7.1 Exception classes and error reasons

Exception classes
error Run-time error for example when applying an operator to the

wrong types of arguments. Run-time errors can be raised by
calling the BIFs erlang:error(Reason) or
erlang:error(Reason, Args)

exit The process calls exit(Reason), see section 6.4
throw The process calls throw(Expr), see section 7.2

An exception will cause the process to crash, i.e. its execution is stopped and it is removed from the system.
It is also said to terminate. Then exit signals will be sent to any linked processes. An exception consists of its
class, an exit reason and a stack. The stack trace can be retrieved using the BIF erlang:get_stacktrace/0.

Run-time errors and other exceptions can be prevented from causing the process to terminate by using the
expressions try and catch.

For exceptions of class error, for example normal run-time errors, the exit reason is a tuple {Reason,
Stack} where Reason is a term indicating which type of error.

33

CHAPTER 7. ERROR HANDLING 34

Exit reasons
badarg Argument is of wrong type.
badarith Argument is of wrong type in an arithmetic

expression.
{badmatch, Value} Evaluation of a match expression failed. Value did

not match.
function_clause No matching function clause is found when

evaluating a function call.
{case_clause,
Value}

No matching branch is found when evaluating a
case expression. Value did not match.

if_clause No true branch is found when evaluating an if
expression.

{try_clause, Value} No matching branch is found when evaluating the
of section of a try expression. Value did not
match.

undef The function cannot be found when evaluating a
function call

{badfun, Fun} There is something wrong with Fun
{badarity, Fun} A fun is applied to the wrong number of

arguments. Fun describes it and the arguments
timeout_value The timeout value in a receive...after expression

is evaluated to something else than an integer or
infinity

noproc Trying to link to a non-existant process
{nocatch, Value} Trying to evaluate a throw outside of a catch.

Value is the thrown term
system_limit A system limit has been reached

Stack is the stack of function calls being evaluated when the error occurred, given as a list of tuples {Module,
Name, Arity} with the most recent function call first. The most recent function call tuple may in some cases
be {Module, Name, Args}.

7.2 Catch and throw

catch Expr

This returns the value of Expr unless an exception occurs during its evaluation. Then the return value will
be a tuple containing information about the exception.

{’EXIT’, {Reason, Stack}}

Then the exception is caught. Otherwise it would terminate the process. If the exception is caused by
a function call exit(Term) the tuple {’EXIT’,Term} is returned. If the exception is caused by calling
throw(Term) then Term will be returned.

catch 1+2 ⇒ 3
catch 1+a ⇒ {’EXIT’,{badarith,[...]}}

catch has low precedence and catch subexpressions often need to be enclosed in a block expression or in
parentheses.

A = (catch 1+2) ⇒ 3

The BIF throw(Expr) is used for non-local return from a function. It must be evaluated within a catch,
which returns the result from evaluating Expr.

CHAPTER 7. ERROR HANDLING 35

catch begin 1,2,3,throw(four),5,6 end ⇒ four

If throw/1 is not evaluated within a catch, a nocatch run-time error will occur.

A catch will not prevent a process from terminating due to an exit signal from another linked process (unless
it has been set to trap exits).

7.3 Try

The try expression is able to distinguish between different exception classes. The following example emulates
the behaviour of catch Expr:

try Expr
catch

throw:Term -> Term;
exit:Reason -> {’EXIT’, Reason};
error:Reason -> {’EXIT’,{Reason, erlang:get_stacktrace()}}

end

The full description of try is as follows:

try Expr [of
Pattern1 [when GuardSeq1] -> Body1;
...;
PatternN [when GuardSeqN] -> BodyN]

[catch
[Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] -> ExceptionBody1;
...;
[ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] -> ExceptionBodyN]

[after AfterBody]
end

There has to be at least one catch or an after clause. There may be an of clause following the Expr which
adds a case expression on the value of Expr.

try returns the value of Expr unless an exception occurs during its evaluation. Then the exception is caught
and the patterns ExceptionPattern with the right exception Class are sequentially matched against the
caught exception. An omitted Class is shorthand for throw. If a match succeeds and the optional guard
sequence ExceptionGuardSeq is true, the corresponding ExceptionBody is evaluated and becomes the return
value.

If there is no matching ExceptionPattern of the right Class with a true guard sequence, the exception is
passed on as if Expr had not been enclosed in a try expression. An exception occurring during the evaluation
of an ExceptionBody it is not caught.

If none of the of Patterns match, a try_clause run-time error will occur.

If defined then AfterBody is always evaluated last irrespective of whether and error occurred or not. Its
return value is ignored and the return value of the try is the same as without an after section. AfterBody
is evaluated even if an exception occurs in Body or ExceptionBody, in which case the exception is passed on.

An exception that occurs during the evaluation of AfterBody itself is not caught, so if the AfterBody is
evaluated due to an exception in Expr, Body or ExceptionBody, that exception is lost and masked by the
new exception.

8
Distributed Erlang

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each
other. Each such runtime system is called a node. Nodes can reside on the same host or on different hosts
connected through a network. The standard distribution mechanism is implemented using TCP/IP sockets
but other mechanisms can also be implemented.

Message passing between processes on different nodes, as well as links and monitors, is transparent when
using Pids. However, registered names are local to each node. A registered process at a particular node is
referred to as {Name,Node}.

The Erlang Port Mapper Daemon epmd is automatically started on every host where an Erlang node is
started. It is responsible for mapping the symbolic node names to machine addresses.

8.1 Nodes

A node is an executing Erlang runtime system which has been given a name, using the command line flag
-name (long name) or -sname (short name).

The format of the node name is an atom Name@Host where Name is the name given by the user and Host is
the full host name if long names are used, or the first part of the host name if short names are used. node()
returns the name of the node. Nodes using long names cannot communicate with nodes using short names.

8.2 Node connections

The nodes in a distributed Erlang system are fully connected. The first time the name of another node is
used, a connection attempt to that node will be made. If a node A connects to node B, and node B has a
connection to node C, then node A will also try to connect to node C. This feature can be turned off using
the command line flag:

-connect_all false

If a node goes down, all connections to that node are removed. The BIF:

erlang:disconnect(Node)

disconnects Node. The BIF nodes() returns the list of currently connected (visible) nodes.

36

CHAPTER 8. DISTRIBUTED ERLANG 37

8.3 Hidden nodes

It is sometimes useful to connect to a node without also connecting to all other nodes. For this purpose,
a hidden node may be used. A hidden node is a node started with the command line flag -hidden.
Connections between hidden nodes and other nodes must be set up explicitly. Hidden nodes do not show up
in the list of nodes returned by nodes(). Instead, nodes(hidden) or nodes(connected) must be used. A
hidden node will not be included in the set of nodes that the module global keeps track of.

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library
erl_interface contains functions for this purpose.

8.4 Cookies

Each node has its own magic cookie, which is an atom. The Erlang network authentication server (auth)
reads the cookie in the file $HOME/.erlang.cookie. If the file does not exist, it will be created with a random
string as content.

The permissions of the file must be set to octal 400 (read-only by user). The cookie of the local node may
also be set using the BIF erlang:set_cookie(node(), Cookie).

The current node is only allowed to communicate with another node Node2 if it knows its cookie. If this is
different from the current node (whose cookie will be used by default) it must be explicitly set with the BIF
erlang:set_cookie(Node2, Cookie2).

8.5 Distribution BIFs

Distribution BIFs
node() Returns the name of the current node.

Allowed in guards
is_alive() Returns true if the runtime system is a

node and can connect to other nodes,
false otherwise

erlang:get_cookie() Returns the magic cookie of the
current node

set_cookie(Node, Cookie) Sets the magic cookie used when
connecting to Node. If Node is the
current node, Cookie will be used
when connecting to all new nodes

nodes() Returns a list of all visible nodes to
which the current node is connected to

nodes(connected|hidden) Returns a list not only of visible
nodes, but also hidden nodes and
previously known nodes, etc.

monitor_node(Node,
true|false)

Monitors the status of Node. A
message {nodedown, Node} is
received if the connection to it is lost

node(Pid|Ref|Port) Returns the node where the argument
is located

erlang:disconnect_node(Node) Forces the disconnection of Node
spawn[_link|_opt](Node,

Module, Function, Args)
Creates a process at a remote node

spawn[_link|_opt](Node, Fun) Creates a process at a remote node

CHAPTER 8. DISTRIBUTED ERLANG 38

8.6 Distribution command line flags

Distribution command line flags
-connect_all false Only explicit connection set-ups will be used
-hidden Makes a node into a hidden node
-name Name Makes a runtime system into a node, using long

node names
-setcookie Cookie Same as calling

erlang:set_cookie(node(), Cookie))
-sname Name Makes a runtime system into a node, using short

node names

8.7 Distribution modules

There are several modules available which are useful for distributed programming:

Kernel modules useful for distribution
global A global name registration facility
global_group Grouping nodes to global name registration groups
net_adm Various net administration routines
net_kernel Erlang networking kernel
STDLIB modules useful for distribution
slave Start and control of slave nodes

9
Ports and Port Drivers

Ports provide a byte-oriented interface to external programs and communicate with Erlang processes by
sending and receiving lists of bytes as messages. The Erlang process that creates a port is called the port
owner or the connected process of the port. All communication to and from the port should go via
the port owner. If the port owner terminates, so will the port (and the external program, if it has been
programmed correctly).

The external program forms another OS process. By default, it should read from standard input (file
descriptor 0) and write to standard output (file descriptor 1). The external program should terminate when
the port is closed.

9.1 Port Drivers

Drivers are normally programmed in C and are dynamically linked to the Erlang runtime system. The linked-
in driver behaves like a port and is called a port driver. However, an erroneous port driver might cause the
entire Erlang runtime system to leak memory, hang or crash.

9.2 Port BIFs

Port creation BIF
open_port(PortName,
PortSettings)

Returns a port identifier Port as
the result of opening a new Erlang
port. Messages can be sent to and
received from a port identifier, just
like a Pid. Port identifiers can also
be linked to or registered under a
name using link/1 and register/2.

PortName is usually a tuple {spawn,Command} where the string Command is the name of the external program.
The external program runs outside the Erlang workspace unless a port driver with the name Command is
found. If the driver is found, it will be started.

PortSettings is a list of settings (options) for the port. The list typically contains at least a tuple {packet,N}
which specifies that data sent between the port and the external program are preceded by an N-byte length
indicator. Valid values for N are 1, 2 or 4. If binaries should be used instead of lists of bytes, the option
binary must be included.

39

CHAPTER 9. PORTS AND PORT DRIVERS 40

The port owner Pid communicates with Port by sending and receiving messages. (Any process could send
the messages to the port, but messages from the port will always be sent to the port owner).

Messages sent to a port
{Pid, {command,
Data}}

Sends Data to the port.

{Pid, close} Closes the port. Unless the port is already
closed, the port replies with {Port, closed}
when all buffers have been flushed and the port
really closes.

{Pid,{connect,NewPid}} Sets the port owner of Port to NewPid. Unless
the port is already closed, the port replies with
{Port, connected} to the old port owner.
Note that the old port owner is still linked to
the port, but the new port owner is not.

Data must be an I/O list. An I/O list is a binary or a (possibly deep) list of binaries or integers in the range
0..255.

Messages received from a port
{Port, {data, Data}} Data is received from the external program
{Port, closed} Reply to Port ! {Pid,close}
{Port, connected} Reply to Port ! {Pid,{connect, NewPid}}
{’EXIT’, Port, Reason} If Port has terminated for some reason.

Instead of sending and receiving messages, there are also a number of BIFs that can be used. These can be
called by any process, not only the port owner.

Port BIFs
port_command(Port, Data) Sends Data to Port
port_close(Port) Closes Port
port_connect(Port, NewPid) Sets the port owner of Port to NewPid.

The old port owner Pid stays linked to
the port and has to call unlink(Port) if
this is not desired.

erlang:port_info(Port,
Item)

Returns information as specified by Item

erlang:ports() Returns a list of all ports on the current
node

There are some additional BIFs that only apply to port drivers: port_control/3 and erlang:port_call/3.

10
Code loading

Erlang supports code updating in a running system. Code replacement is performed at module level.

The code of a module can exist in two versions in a system: current and old. When a module is loaded
into the system for the first time, the code becomes current. If a new instance of the module is loaded, the
code of the previous instance becomes old and the new instance becomes current. Normally a module is
automatically loaded the first time a function in it is called. If the module is already loaded then it must
explicitly be loaded again to a new version.

Both old and current code are valid, and may be used concurrently. Fully qualified function calls will always
refer to the current code. However, the old code may still be run by other processes.

If a third instance of the module is loaded, the code server will remove (purge) the old code and any processes
lingering in it are terminated. Then the third instance becomes current and the previously current code
becomes old.

To change from old code to current code, a process must make a fully qualified function call.

-module(mod).
-export([loop/0]).

loop() ->
receive

code_switch ->
mod:loop();

Msg ->
...
loop()

end.

To make the process change code, send the message code_switch to it. The process then will make a fully
qualified call to mod:loop() and change to the current code. Note that mod:loop/0 must be exported.

41

11
Macros

11.1 Defining and using macros

-define(Const, Replacement).
-define(Func(Var1, ..., VarN), Replacement).

A macro must be defined before it is used but a macro definition may be placed anywhere among the
attributes and function declarations of a module. If a macro is used in several modules it is advisable to put
the macro definition in an include file. A macro is used as follows:

?Const
?Func(Arg1,...,ArgN)

Macros are expanded during compilation. A macro reference ?Const is replaced by Replacement like this:

-define(TIMEOUT, 200).
...
call(Request) ->

server:call(refserver, Request, ?TIMEOUT).

is expanded to:

call(Request) ->
server:call(refserver, Request, 200).

A macro reference ?Func(Arg1, ..., ArgN) will be replaced by Replacement, where all occurrences of a
variable VarX from the macro definition are replaced by the corresponding argument ArgX.

-define(MACRO1(X, Y), {a, X, b, Y}).
...
bar(X) ->

?MACRO1(a, b),
?MACRO1(X, 123).

will be expanded to:

bar(X) ->
{a, a, b, b},

42

CHAPTER 11. MACROS 43

{a, X, b, 123}.

To view the result of macro expansion, a module can be compiled with the ‘P’ option:

compile:file(File, [’P’]).

This produces a listing of the parsed code after preprocessing and parse transforms, in the file File.P.

11.2 Predefined macros

Predefined macros
?MODULE The name of the current module
?MODULE_STRING The name of the current module, as a string
?FILE The file name of the current module
?LINE The current line number
?MACHINE The machine name, ’BEAM’

11.3 Flow Control in Macros

-undef(Macro). % This inhibits the macro definition.

-ifdef(Macro).
%% Lines that are evaluated if Macro was defined

-else.
%% If the condition was false, these lines are evaluated instead.

-endif.

ifndef(Macro) can be used instead of ifdef and means the opposite.

-ifdef(debug).
-define(LOG(X), io:format("{~p,~p}:~p~n",[?MODULE,?LINE,X])).
-else.
-define(LOG(X), true).
-endif.

If debug is defined when the module is compiled, ?LOG(Arg) will expand to a call to io:format/2 and provide
the user with some simple trace output.

11.4 Stringifying Macro Arguments

??Arg, where Arg is a macro argument expands to the argument in the form of a string.

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).

?TESTCALL(myfunction(1,2)),
?TESTCALL(you:function(2,1)),

results in:

CHAPTER 11. MACROS 44

io:format("Call ~s: ~w~n", ["myfunction(1,2)", m:myfunction(1,2)]),
io:format("Call ~s: ~w~n", ["you:function(2,1)", you:function(2,1)]),

That is, a trace output with both the function called and the resulting value.

12
Further Reading and Resources

Following websites provide in-depth explanation of topics and concepts briefly covered in this document:

• Official Erlang documentation: http://www.erlang.org/doc/

• Learn You Some Erlang for Great Good: http://learnyousomeerlang.com/

• Tutorials section at Erlang Central: https://erlangcentral.org/wiki/index.php?title=Category:
HowTo

Still have questions? erlang-questions mailing list (http://erlang.org/mailman/listinfo/erlang-questions)
is a good place for general discussions about Erlang/OTP, the language, implementation, usage and beginners
questions.

45

http://www.erlang.org/doc/
http://learnyousomeerlang.com/
https://erlangcentral.org/wiki/index.php?title=Category:HowTo
https://erlangcentral.org/wiki/index.php?title=Category:HowTo
http://erlang.org/mailman/listinfo/erlang-questions

	Background, or Why Erlang is that it is
	Structure of an Erlang program
	Module syntax
	Module attributes
	Pre-defined module attributes
	Macro and record definitions
	File inclusion

	Comments
	Character Set
	Reserved words

	Data types (terms)
	Unary data types
	Atoms
	Booleans
	Integers
	Floats
	References
	Ports
	Pids
	Funs

	Compound data types
	Tuples
	Records
	Lists
	Strings
	Binaries

	Escape sequences
	Type conversions

	Pattern Matching
	Variables
	Pattern Matching
	Match operator (=) in patterns
	String prefix in patterns
	Expressions in patterns
	Matching binaries

	Functions
	Function definition
	Function calls
	Expressions
	Term comparisons
	Arithmetic expressions
	Boolean expressions
	Short-circuit boolean expressions
	Operator precedences

	Compound expressions
	If
	Case
	List comprehensions

	Guard sequences
	Tail recursion
	Funs
	BIFs — Built-in functions

	Processes
	Process creation
	Registered processes
	Process communication
	Send
	Receive
	Receive with timeout

	Process termination
	Process links
	Error handling between processes
	Sending exit signals
	Receiving exit signals

	Monitors
	Process priorities
	Process dictionary

	Error handling
	Exception classes and error reasons
	Catch and throw
	Try

	Distributed Erlang
	Nodes
	Node connections
	Hidden nodes
	Cookies
	Distribution BIFs
	Distribution command line flags
	Distribution modules

	Ports and Port Drivers
	Port Drivers
	Port BIFs

	Code loading
	Macros
	Defining and using macros
	Predefined macros
	Flow Control in Macros
	Stringifying Macro Arguments

	Further Reading and Resources

