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Chapter 1

Starting Out

A word of warning: if you require fancy graphically oriented development environments, you will be sorely
disappointed in the Python Programming Language. Python is programming at its simplest: a prompt at
which you type in expressions which the Python interpreter evaluates. Of course, you can create Python
programs using your favorite text editor (mine is vim). Python can be used as a scripting language, as well.

1.1 Running Python

In a terminal window, simply type the command:

python3

and press the <Enter> key. You should be rewarded with the Python prompt.

>>>

At this point, you are ready to proceed to next chapter.
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Chapter 2

Literals

Python works by figuring out the meaning or value of some code. This is true for the tiniest pieces of code
to the largest programs. The process of finding out the meaning of code is known as evaluation.

The things whose values are the things themselves are known as literals. The literals of Python can be
categorized by the following types: integers, real numbers, strings, Booleans, and arrays.

Python (or more correctly, the Python interpreter) responds to literals by echoing back the literal itself.
Here are examples of each of the types:

>>> 3

3

>>> -4.9

-4.9

>>> "hello"

'hello'

>>> True

True

>>>[3, -4.9, "hello"]

[3, -4.9, 'hello']

Let’s examine the five types in more detail.

2.1 Integers

Integers are numbers without any fractional parts. Examples of integers are:

>>> 3

3

>>> -5

-5

>>> 0

0

7



8 CHAPTER 2. LITERALS

Integers must begin with a digit or a minus sign. The initial minus sign must immediately be followed by a
digit.

2.2 Real Numbers

Reals are numbers that do have a fractional part (even if that fractional part is zero!). Examples of real
numbers are:

>>> 3.2

3.2

>>> 4.0

4.00000000000

>>> 5.

5.00000000000

>>> 0.3

0.30000000000

>>> .3

0.30000000000

>>> 3.0e-4

0.0003

>>> 3e4

30000.0

>>> .000000987654321

9.87654321e-07

Real numbers must start with a digit or a minus sign or a decimal point. An initial minus sign must
immediately be followed by a digit or a decimal point. An initial decimal point must immediately be
followed by a digit. Python accepts real numbers in scientific notation. For example, 3.0 ∗ 10−11 would be
entered as 3.0e-11. The “e” stands for exponent and the 10 is understood, so e-11 means multiply whatever
precedes the e by 10−11.

The Python interpreter can hold huge numbers, limited by only the amount of memory available to the
interpreter, but holds only 15 digits after the decimal point:

>>> 1.2345678987654329

1.234567898765433

Note that Python rounds up or rounds down, as necessary.

Numbers greater than 106 and less than 10−6 are displayed in scientific notation.

2.3 Strings

Strings are sequences of characters delineated by double quotation marks:
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>>> "hello, world!"

'hello, world!'

>>> "x\nx"

'x\nx'

>>> "\"z\""

'"z"'

>>> ""

''

Python accepts both double quotes and single quotes to delineate strings. In this text, we will use the con-
vention that double quotes are used for strings of multiple characters and single quotes for strings consisting
of a single character.

Characters in a string can be escaped (or quoted) with the backslash character, which changes the meaning of
some characters. For example, the character n, in a string refers to the letter n while the character sequence
\n refers to the newline character. A backslash also changes the meaning of the letter t, converting it into
a tab character. You can also quote single and double quotes with backslashes. When other characters are
escaped, it is assumed the backslash is a character of the string and it is escaped (with a backslash) in the
result:

>>> "\z"

'\\z'

Note that Python, when asked the value of strings that contain newline and tab characters, displays them
as escaped characters. When newline and tab characters in a string are printed in a program, however, they
are displayed as actual newline and tab characters, respectively. As already noted, double and single quotes
can be embedded in a string by quoting them with backslashes. A string with no characters between the
double quotes is known as an empty string.

Unlike some languages, there is no character type in Python. A single character a, for example, is entered
as the string "a" or 'a'.

2.4 True, False, and None

There are two special literals, True and False. These literals are known as the Boolean values and are
used to guide the flow of a program. The term Boolean is derived from the last name of George Boole,
who, in his 1854 paper An Investigation of the Laws of Thought, on which are founded the Mathematical
Theories of Logic and Probabilities, laid one of the cornerstones of the modern digital computer. The so-
called Boolean logic or Boolean algebra is concerned with the rules of combining truth values (i.e., true
or false). As we will see, knowledge of such rules will be important for making Python programs behave
properly. In particular, Boolean expressions will be used to control conditionals and loops.

Another special literal is None. This literal is used to indicate the end of lists; it also is used to indicates
something that has not yet been created. More on None when we cover lists and objects.

2.5 Collections of literals

If you read any other text on Python, the basic way of grouping literals together (rather like throwing a
bunch of groceries in a shopping bag) is called a list. However, in all Python implementations I have tested,
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these lists are not lists at all, at least in the Computer Science sense, but are actually arrays, specifically
dynamic arrays. Because this text is a Computer Science text, rather than a programming text, we will use
the term array rather than list and introduce true lists in a later chapter1.

Arrays are just collections of values. One creates an array by enclosing a comma-separated listing of values
in square brackets. The simplest array is empty:

>>>[]

[]

Arrays can contain any values:

>>>[2, "help", len]

[2, 'help', <built-in function len>]

The first value is an integer, the second a string, and the third is something known as a function. We will
learn more about functions later, but the len function is used to tell us how many items are in an array:

>>> len([2, "help", len])

3

As expected, the len function tells us that the array [2, "help", len] has three items in it.

Arrays can even contain arrays!

>>>[0, [3, 2, 1], 4]

[0, [3, 2, 1], 4]

An array is something known as a data structure; data structures are extremely important in writing sophis-
ticated programs.

2.6 Indexing into Arrays

You can pull out an item from an array by using bracket notation. With bracket notation, you specify exactly
which element (or elements) you wish to extract from the array. This specification is called an index. The
first element of the array has index 0, the second index 1, and so on. This concept of having the first element
having an index of zero is known as zero-based counting, a common concept in Computer Science. Here is
some code that extracts the first element of an array. Note that the first interaction creates a variable named
items that points to an array of three elements.

>>> items = ['a', True, 7]

>>> items

['a', True, 7]

1You might be wondering how I know Python lists are actually arrays. I came to this conclusion by looking at how long it
took to access items in a very, very long list. In a list, accessing items at the back should take much longer than accessing items
at the front. In an array, the amount of time should be the same. In my tests, the time to access an item was independent of
the item’s position. Therefore, Python lists must be arrays of some sort. You will learn more about this kind of analysis in
your next Computer Science class.
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>>> items[0]

'a'

>>> items[1]

True

>>> items[2]

7

>>> items

['a', True, 7]

Note that extracting an item from an array leaves the array unchanged. What happens if our index is too
large?

>>> items[3]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

Not surprisingly, we get an error. Note that error message refers to a “list” as opposed to an array. Do not
be confused.

There is a special notation for extracting more than one element of an array. This notation is known as a
slice. Here is a slice that extracts all but the first element of an array:

>>> items[1:]

[True, 7]

This particular slice (you can slice an array many different ways) says, start extracting at the second item
(which has index one) and go to the end. This operation is so common, it has a special name, taking the
tail of an array.

Here is a slice that says, start extracting at the first element (which has index 0) and go up to, but do not
include, the element with index 2:

>>> items[0:2]

['a', True]

We will see more of slicing when we study recursion in a later chapter.
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Chapter 3

Combining Literals

Like the literals themselves, combinations of literals are also expressions. For example, suppose you have
forgotten your times table and aren’t quite sure whether 8 times 7 is 54 or 56. We can ask Python, presenting
the interpreter with the expression:

>>> 8 * 7

56

>>> 8*7

56

Pressing the Enter key signals the end of the expression. The multiplication sign * is known as an operator, as
it operates on the 8 and the 7, producing an equivalent literal value. The 8 and the 7 are known as operands.
It seems that the actual names of various operands are not being taught anymore, so for nostalgia’s sake, here
they are. The operand to the left of the multiplication sign (in this case the 8) is known as the multiplicand.
The operand to the right (in this case the 7) is known as the multiplier. The result is known as the product.

The operands of the other basic operators have special names too. For addition, the left operand is known as
the augend and the right operand is known as the addend. The result is known as the sum. For subtraction,
the left operand is the minuend, the right the subtrahend, and the result as the difference. For division (and
I think this is still taught), the left operand is the dividend, the right operand is the divisor, and the result
is the quotient. Finally, for exponentiation, which is shorthand for repeated multiplication:

>>> 3 ** 4

81

>>> 3 * 3 * 3 * 3

81

the left operand is the base and the right operand is the exponent.

In general, we will separate operators from their operands by spaces, tabs, or newlines, collectively known
as whitespace.1 It’s not necessary to do so, but it makes your code easier to read.

Python always takes in an expression and displays an equivalent literal expression (e.g., integer or real). All
Python operators are binary, meaning they operate on exactly two operands. We first look at the numeric
operators.

1Computer Scientists, when they have to write their annual reports, often refer to the things they are reporting on as
darkspace. It’s always good to have a lot of darkspace in your annual report!

13
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3.1 Numeric operators

If it makes sense to add two things together, you can probably do it in Python using the + operator. For
example:

>>> 2 + 3

5

>>> 1.9 + 3.1

5.0

One can see that if one adds two integers, the result is an integer. If one does the same with two reals, the
result is a real.

You can even add strings with strings and arrays with arrays:

>>> "hello" + "world"

'helloworld'

>>> [1, 3, 5] + [2, 4, 6]

[1, 3, 5, 2, 4, 6]

The process of joining strings and arrays together is known as concatenation. Array concatenation is an
expensive processive, since you need to the values of both arrays source arrays to build the resulting array.

Things get more interesting when you add things having different types. Adding an integer and a real (in
any order) always yields a real.

>>> 2 + 3.3

5.3

>>> 3.3 + 2

5.3

Adding an string to an integer (with an augend integer) yields an error; the types are not “close” enough,
like they are with integers and reals:

>>> 2 + "hello"

TypeError: unsupported operand types(s) for +: 'int' and 'str'

In general, when adding two things, the types must match or nearly match.

You can multiply strings and arrays with numbers:

>>> "hello" * 3

'hellohellohello'

>>> [1, 2] * 3

[1, 2, 1, 2, 1, 2]



3.2. COMPARING THINGS 15

Subtraction and division of numbers follow the same rules as addition. However, these operators, as defined,
do not work for strings and arrays.

Of special note is the division operator with respect to integer operands. Consider evaluating the following
expression:

15 / 2

If one asked the Python interpreter to perform this task, the result would be 7.5, as expected. However,
often we wish for just the quotient without the remainder. In this case, the quotient is 7 and the remainder
is 0.5. The double forward slash operator is Python’s quotient operator; if we ask the interpreter to evaluate

14 // 5

the result would be 2, not 2.8. Use of the quotient operator is known as integer division.2

The complement to integer division is the modulus operator %. While the result of integer division is the
quotient, the result of the modulus operator is the remainder. Thus

14 % 5

evaluates to 4 since 4 is left over when 5 is divided into 14. To check if this is true, one can ask the interpreter
to evaluate:

(14 // 5 * 5) + (14 % 5) == 14

This complicated expression asks the question “is it true that the quotient times the divisor plus the remainder
is equal to the original dividend?”. The Python interpreter will respond that, indeed, it is true. The reason
for the parentheses is delineate the quotient and the remainder within the addition. The parentheses can
also be used to change the precedence of operators; this is is explained in more detail in the next chapter.

3.2 Comparing things

Remember the Boolean literals, True and False? We can use the Boolean comparison operators to
generate such values. For example, we can ask if 3 is less than 4:

>>> 3 < 4

True

The interpreters response says that, indeed, 3 is less than 4. If it were not, the interpreter would respond
with False. Besides < (less than), there are other Boolean comparison operators: <= (less than or equal
to), > (greater than), >= (greater than or equal to), == (equal to), and != (not equal to).

Note that two equal signs are used to see if to things are the same. A single equals sign is reserved for the
assignment operator, which you will learn about in a later chapter.

Besides integers, we can compare reals with reals, strings with strings, and arrays with arrays using the
comparison operators:

2In most other modern programming languages, a single / means integer division, so don’t forget this when you learn a new
language!
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>>> "apple" < "banana"

True

>>> [1, 2, 3] < [1, 2, 4]

True

In general, it is illegal to compare integers or reals with strings.

Any Python type can be compared with any other type with the equality and inequality operators, ==

and !=. These operators are used to see if two things are the same or not the same, as the case may be.
Usually, for two things to be considered the same, they have to be the same kind of thing or type. For
example, the expression: 123 == "123" resolves to False, because integers are not strings and vice versa.
Likewise, "False" != False resolves to True, because strings are not Booleans and vice versa. There is
an exception, though. If an integer is compared with a real, the integer is converted into a real before the
comparison is made. In the case of arrays, == will return False if the arrays have differing lengths. If the
arrays have equal length, then each item in one array is compared using == to the respective item in the other
array. All individual items must be equal for the two arrays to be equal. For example [1, [2, 1, 0], 3]

and [1, [2, 1, 8], 3] would be considered “not equal”, since the middle items would not be considered
equal.

3.3 Combining comparisons

We can combine comparisons with the Boolean logical connectives and and or:

>>> 3 < 4 and 4 < 5

True

>>> 3 < 4 or 4 < 5

True

>>> 3 < 4 and 5 < 4

False

>>> 3 < 4 or 5 < 4

True

The first interaction asks if both the expression 3 < 4 and the expression 4 < 5 are true. Since both are,
the interpreter responds with True. The second interaction asks if at least one of the expressions is true.
Again, the interpreter responds with True. The difference between and and or is illustrated in the last two
interactions. Since only one expression is true (the latter expression being false) only the or operator yields
a true value.

There is one more Boolean logic operation, called not. It simply reverses the value of the expression to
which it is attached. The not operator can only be called as a function (since it is not a binary operator).
Since you do not yet know about functions, I’ll show you what it looks like but won’t yet explain its actions.

>>> not(3 < 4 and 4 < 5)

False

>>> not(3 < 4 or 4 < 5)

False
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>>> not(3 < 4 and 5 < 4)

True

>>> not(3 < 4 or 5 < 4)

False

Note that we attached not to each of the previous expressions involving the logical connectives. Note also
that the response of the interpreter is reversed from before in each case.
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Chapter 4

Precedence and Associativity

4.1 Precedence

Precedence (partially) describes the order in which operators, in an expression involving different operators,
are evaluated. In Python, the expression

3 + 4 < 10 - 2

evaluates to true. In particular, 3 + 4 and 10 - 2 are evaluated before the <, yielding 7 < 8, which is
indeed true. This implies that + and - have higher precedence than <. If < had higher precedence, then 4 <

10 would be evaluated first, yielding 3 + True - 2, which is nonsensical.

Note that precedence is only a partial ordering. We cannot tell, for example whether 3 + 4 is evaluated
before the 10 - 2, or vice versa. Upon close examination, we see that it does not matter which is performed
first as long as both are performed before the expression involving < is evaluated.

It is common to assume that the left operand is evaluated before the right operand. For the Boolean
connectives and and or, this is indeed true. But for other operators, such an assumption can lead you into
trouble. You will learn why later. For now, remember never, never, never depend on the order in which
operands are evaluated!

The lowest precedence operator in Python is the assignment operator which is described later. Next come
the Boolean connectives and and or. At the next higher level are the Boolean comparatives, <, <=, >,
>=, ==, and !=. After that come the additive arithmetic operators + and-. Next comes the multiplicative
operators *, / and %. Higher still is the exponentiation operator **. Finally, at the highest level of precedence
is the selection, or dot, operator (the dot operator is a period or full-stop). Higher precedence operations
are performed before lower precedence operations. Functions which are called with operator syntax have the
same precedence level as the mathematical operators.

4.2 Associativity

Associativity describes how multiple expressions connected by operators at the same precedence level are
evaluated. All the operators, with the exception of the assignment and exponentiation operators, are left
associative. For example the expression 5 - 4 - 3 - 2 - 1 is equivalent to ((((5 - 4) - 3) - 2) - 1). For a
left-associative structure, the equivalent, fully parenthesized, structure has open parentheses piling up on
the left. If the minus operator was right associative, the equivalent expression would be (5 - (4 - (3 - (2
- 1)))), with the close parentheses piling up on the right. For a commutative operator, it does not matter
whether it is left associative or right associative. Subtraction, however, is not commutative, so associativity

19
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does matter. For the given expression, the left associative evaluation is -5. If minus were right associative,
the evaluation would be 3.



Chapter 5

Variables

Suppose you found an envelope lying on the street and on the front of the envelope was printed the name
numberOfDogsTeeth. Suppose further that you opened the envelope and inside was a piece of paper with
the number 42 written upon it. What might you conclude from such an encounter? Now suppose you kept
walking and found another envelope labeled meaningOfLifeUniverseEverything and, again, upon opening it
you found a slip of paper with the number 42 on it. Further down the road, you find two more envelopes,
entitled numberOfDotsOnPairOfDice and StatuteOfLibertyArmLength, both of which contain the number 42.

Finally, you find one last envelope labeled sixTimesNine and inside of it you, yet again, find the number 42.
At this point, you’re probably thinking “somebody has an odd affection for the number 42” but then the
times table that is stuck somewhere in the dim recesses of your brain begins yelling at you saying “54! It’s
54!”. After this goes on for an embarrassingly long time, you realize that 6 * 9 is not 42, but 54. So you
cross out the 42 in the last envelope and write 54 instead and put the envelope back where you found it.

This strange little story, believe it or not, has profound implications for writing programs that both humans
and computers can understand. For programming languages, the envelope is a metaphor for something called
a variable, which can be thought of as a label for a place in memory where a literal value can reside. In other
words, a variable can be thought of as a convenient name for a value. In many programming languages, one
can change the value at that memory location, much like replacing the contents of an envelope.1 A variable
is our first encounter with a concept known as abstraction, a concept that is fundamental to the whole of
computer science.2

5.1 Variables

Most likely, you’ve encountered the term variable before. Consider the slope-intercept form of an algebraic
equation of a particular line:

y = 2x− 3

You probably can tell from this equation that the slope of this line is 2 and that it intercepts the y-axis at
-3. But what role do the letters y and x actually play? The names x and y are placeholders and stand for
the x- and y-coordinates of any conceivable point on that line. Without placeholders, the line would have
to be described by listing every point on the line. Since there are an infinite number of points, clearly an
exhaustive list is not feasible. As you learned in your algebra class, the common name for a place holder for
a specific value is the term variable.

1Languages that do not allow changes to a variable are called functional languages. Python is an “impure” functional
language since it is mostly functional but allows for variable modification.

2Another fundamental concept is analogy and if you understand the purpose of the envelope story after reading this section,
you’re well on your way to being a computer scientist!

21
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One can generalize the above line resulting in an equation that describes every line.3

y = mx + b

Here, the variable m stands for the slope and b stands for the y-intercept. Clearly, this equation was not
dreamed up by an English-speaking computer scientist; a cardinal rule is to choose good names or mnemonics
for variables, such as s for slope and i for intercept. But alas, for historical reasons, we are stuck with m and
b.

The term variable is also used in most programming languages, including Python, and the term has roughly
the equivalent meaning. The difference is programming languages use the envelope metaphor while algebraic
meaning of variable is an equivalence to a value.4 The difference is purely philosophical and not worth
going into at this time. Suppose you found three envelopes, marked m, x, and b, and inside those three
envelopes you found the numbers 6, 9, and -12 respectively. If you were asked to make a y envelope, what
number should you put inside? If the number 42 in the sixTimesNine envelope in the previous story did not
bother you (e.g., your internal times table was nowhere to be found), perhaps you might need a little help
in completing your task. We can have Python calculate this number with the following dialog:

>>> m = 6

>>> x = 9

>>> b = -12

>>> y = m * x + b

>>> y

42

The Python interpreter, when asked to compute the value of an expression containing variables, goes to
those envelopes (so to speak) and retrieves the values stored there. Note also that Python requires the use of
the multiplication sign to multiply the slope m by the x value. In the algebraic equation, the multiplication
sign is elided, but is required here.

One creates variables in Python by simply assigning a value to the variable.5. If the variable does not exist,
it is created; if it does exist, it’s value is updated. Note that the interpreter does not give a response when
a variable is created or updated.

Here are some more examples of variable creation:

>>> dots = 42

>>> bones = 206

3The third great fundamental concept in computer science is generalization. In particular, computer scientists are always
trying to make things more abstract and more general (but not overly so). The reason is that software/systems/models exhibiting
the proper levels of abstraction and generalization are much much easier to understand and modify. This is especially useful
when you are required to make a last second change to the software/system/model.

4Even the envelope metaphor can be confusing since it implies that two variables having the same value must each have a
copy of that value. Otherwise, how can one value be in two envelopes at the same time? For simple literals, copying is the
norm. For more complex objects, the cost of copying would be prohibitive. The solution is to storing the address of the object,
instead of the object itself, in the envelope. Two variables can now “hold” the same object since it is the address is copied.

5In many other languages, you have to declare a variable with a special syntax before you can assign a value to it
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>>> dots

42

>>> bones

206

>>> CLXIV = bones - dots

164

After a variable is created/updated, the variable and its value can be used interchangeably. Thus, one use
of variables is to set up constants that will be used over and over again. For example, it is an easy matter
to set up an equivalence between the variable PI and the real number 3.14159.

PI = 3.14159

radius = 10

area = PI * radius * radius

circumference = 2 * PI * radius

Notice how the expressions used to compute the values of the variables area and circumference are more
readable than if 3.14159 was used instead of PI. In fact, that is one of the main uses of variables, to make
code more readable. The second is if the value of PI should change (e.g. a more accurate value of PI is
desired,6 we would only need to change the definition of PI (this assumes, of course, we can store those
definitions for later retrieval and do not need to type them into the interpreter again).

5.2 Variable naming

Like many languages, Python is quite restrictive in regards to legal variable names. A variable name must
begin with a letter or an underscore and may be followed by any number of letters, digits, or underscores.

Variables are the next layer in a programming languages, resting on the literal expressions and combinations
of expressions (which are expressions themselves). In fact, variables can be thought of as an abstraction of
the literals and collections of literals. As an analogy, consider your name. Your name is not you, but it is
a convenient (and abstract) way of referring to you. In the same way, variables can be considered as the
names of things. A variable isn’t the thing itself, but a convenient way to referring to the thing.

While Python lets you name variables in wild ways:

>>> _1_2_3_iiiiii__ = 7

you should temper your creativity if it gets out of hand. For example, rather than use the variable m for the
slope, we could use the name slope instead:

slope = 6

We could have also used a different name:

_e_p_o_l_s_ = 6

6The believed value of PI has changed throughout the centuries and not always to be more accurate (see
http://en.wikipedia.org/wiki/History of Pi )
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The name e p o l s is a perfectly good variable name from Python’s point of view. It is a particularly poor
name from the point of making your Python programs readable by you and others. It is important that
your variable names reflect their purpose. In the example above, which is the better name: b, i, intercept,
or t p e c r e t n i to represent the intercept of a line?



Chapter 6

Assignment

Once a variable has been created, it is possible to change its value, or binding, using the assignment operator.
Consider the following interaction with the interpreter:

>>> BLACK = 1 # creation

>>> BROWN = 2 # creation

>>> GREEN = 3 # creation

>>> eyeColor = BLACK # creation

>>> eyeColor # reference

1

>>> eyeColor = GREEN # assignment!

>>> eyeColor == BLACK # equality

False

>>> eyeColor == BROWN # equality

False

>>> eyeColor == GREEN # equality

True

Note that the # sign is the comment character in Python; it and any following characters on the line are
ignored.

The operator/variable = (equals sign) is bound to the assignment function. The assignment function, however,
is not like the operators + and *. Recall that + and the like evaluate the things on either side (recall that
those things on either side are generically known as operands) before combining them. For =, the left operand
is not evaluated: (if it were, the assignment

eyeColor = GREEN

would attempt to assign the value of 1 to be 3. In general, an operator which does not evaluate all its
arguments is known as a special form.

The last two expressions given to the interpreter in the previous interaction refer to the == (equality) operator.
This == operator returns true if its operands refer to the same thing and false otherwise.

25
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Another thing to note in the above interaction is that the variables BLACK, GREEN, and BROWN are not
meant to change from their initial values. We denote variables whose values aren’t supposed to change by
naming the variable using (mostly) capital letters (this convention is borrowed from earlier programming
languages). The use of caps emphasizes the constant nature of the (not too) variable.

In the above interaction with the interpreter, we use the integers 1, 2, and 3 to represent the colors black,
brown, and green. By abstracting 1, 2, and 3 and giving them meaningful names (i.e., BLACK, BROWN,
and GREEN) we find it easy to read code that assigns and tests eye color. We do this because it is difficult
to remember which integer is assigned to which color. Without the variables BLACK, BROWN, and GREEN,
we have to keep little notes somewhere to remind ourselves what’s what. Here is an equivalent interaction
with the interpreter without the use of the variables BLACK, GREEN, and BROWN.

>>> eyeColor = 1

1

>>> eyeColor

1

>>> eyeColor = 3

3

>>> eyeColor == 2

False

>>> eyeColor == 3

True

In this interaction, the meaning of eyeColor is not so obvious. We know its a 3, but what eye color does
3 represent? When numbers appear directly in code, they are referred to as magic numbers because they
obviously mean something and serve some purpose, but how they make the code work correctly is not always
readily apparent, much like a magic trick. Magic numbers are to be avoided. Using well-name constants (or
variables if constants are not part of the programming language) is considered stylistically superior.

6.1 Precedence and Associativity of Assignment

Assignment has the lowest precedence among the binary operators. It is also right associative. The right
associativity allows for statements like

a = b = c = d = 0

which conveniently assigns a zero to four variables at once and, because of the right associative nature of
the operator, is equivalent to:

(a = (b = (c = (d = 0))))

The resulting value of an assignment operation is the value assigned, so the assignment d = 0 returns 0,
which is, in turn, assigned to c and so on.
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6.2 Assignment and Arrays

You can change a particular element of a array by assigning a new value to the index of that element by
using bracket notation:

>>> items = ['a', True, 7]

>>> items[0] = 'b'

>>> items

['b', True, 7]`

As expected, assigning to index 0 replaces the first element. In the example, the first element ’a’ is replaced
with ’b’.

What bracket notation would you use to change the 7 in the array to a 13? The superior student will
experiment with the Python interpreter to verify his or her guess.

6.3 Assignment Patterns

The art of writing programs lies in the ability to recognize and use patterns that have appeared since the
very first programs were written. In this text, we take a pattern approach to teaching how to program. For
the topic at hand, we will give a number of patterns that you should be able to recognize to use or avoid as
the case may be.

6.3.1 The Transfer Pattern

The transfer pattern is used to change the value of a variable based upon the value of another variable.
Suppose we have a variable named alpha which is initialized to 3 and a variable beta which is initialized to
10:

alpha = 3

beta = 10

Now consider the statement:

alpha = beta

This statement is read like this: make the new value of alpha equal to the value of beta, throwing away the
old value of alpha. What is the value of alpha after that statement is executed?

The new value of alpha is 10.

The transfer pattern tells us that value of beta is imprinted on alpha at the moment of assignment but in no
case are alpha and beta conjoined in anyway in the future. Think of it this way. Suppose your friend spray
paints her bike neon green. You like the color so much you spray paint your bike neon green as well. This is
like assignment: you made the value (color) of your bike the same value (color) as your friend’s bike. Does
this mean your bike and your friend’s bike will always have the same color forever? Suppose your friend
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repaints her bike. Will your bike automatically become the new color as well? Or suppose you repaint your
bike. Will your friend’s bike automatically assume the color of your bike?

A graphical way to see this is to use the idea of a pointer. When a variable is assigned a value, we will say
that variable points to the value. For the variables:

alpha = 3

beta = 10

a pointer diagram would look like:

beta 10

alpha 3

Now when we assign alpha the value of beta:

alpha = beta

we cross out alpha’s pointer and replace it with a pointer to whatever beta points:

beta 10

alpha 3x

Note that we never point a variable to another variable; we only point variables to values1. To test your
understanding, what happens if the following code is executed:

alpha = 4

beta = 13

alpha = beta

beta = 5

What are the final values of alpha and beta? Here, the pointer diagram would look like:

beta 13

alpha 4x

beta 13

alpha 4x

5

x

where the picture on the left illustrates what things look like after alpha gets beta’s value and the picture on
the right after beta gets the value of 5. So we can see that the final value of alpha is 13 and beta is 5.

To further test your understanding, what happens if the following code is executed:

1There are languages where it is possible to point a variable to another variable. The most famous of these languages are C
and C++. Python, however, does not allow you to point a variable to a variable.
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alpha = 4

beta = 13

alpha = beta

alpha = 42

What are the final values of alpha and beta? Here, the pointer diagram would look like:

beta 13

alpha 4x

beta 13

alpha 4x

42

x

where the picture on the left illustrates what things look like after alpha gets beta’s value and the picture on
the right after alpha gets the value of 42. So we can see that the final value of alpha is 42 and beta is 13.

6.3.2 The Update Pattern

The update pattern is used to change the value of a variable based upon the original value of the variable.
Suppose we have a variable named counter which is initialized to zero:

counter = 0

Now consider the statement:

counter = counter + 1

This statement is read like this: make the new value of counter equal to the old value of counter plus one.
Since the old value is zero, the new value is one. Consider this sequence:

counter = 0

counter = counter + 1

counter = counter + 1

counter = counter + 1

counter = counter + 1

counter = counter + 1

What is the value of counter after the following code is executed?

The value of counter is 5.

There is another form of this update:

counter = 0

counter += 5
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The operator += says to update the variable on the left by adding in the value on the right to the current
value of the variable.

The update pattern can be used to sum a number of variables. Suppose we wish to compute the sum of the
variables a, b, c, d, and e. The obvious way to do this is with one statement:

sum = a + b + c + d + e

However, we can use the update pattern as well:

sum = 0

sum = sum + a

sum = sum + b

sum = sum + c

sum = sum + d

sum = sum + e

If a is 1, b is 2, c is 3, d is 4, and e is 5, then the value of sum in both cases is 15. Why would we ever
want to use the update pattern for computing a sum when the first version is so much more compact and
readable? The answer is...you’ll have to wait until we cover a programming concept called a loop. With
loops, the update pattern is almost always used to compute sums, products, etc.

6.3.3 The Throw-away Pattern

The throw-away pattern is a mistaken attempt to use the update pattern. In the update pattern, we use the
original value of the variable to compute the new value of the variable. Here again is the classic example of
incrementing a counter:

counter = counter + 1

In the throw-away pattern, the new value is computed but it the variable is not reassigned, nor is the new
value stored anywhere. Many novice programmers attempt to update a counter simply by computing the
new value:

count + 1 # throw-away!

Python does all the work to compute the new value, but since the new value is not assigned to any variable,
the new value is thrown away.

6.3.4 The Throw-away Pattern and Functions

The throw-away pattern applies to function calls as well. We haven’t discussed functions much, but the
following example is easy enough to understand. First we define a function that computes some value:

def inc(x):

return x + 1

This function returns a value one greater than the value given to it, but what the function actually does is
irrelevant to this discussion. That said, we want to start indoctrinating you on the use of functions. Repeat
this ten times:
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We always do four things with functions: define them, call them, return something, and save the
return value.

To call the function, we use the function name followed by a set of parentheses. Inside the parentheses, we
place the value we wish to send to the function. Consider this code, which includes a call to the function
inc:

y = 4

y = inc(y)

print("y is",y)

If we were to run this code, we would see the following output:

y is 5

The value of y, 4, is sent to the function which adds one to the given value and returns this new value. This
new value, 5, is assigned back to y. Thus we see that y has a new value of 5.

Suppose, we run the following code instead:

y = 4

inc(y)

print("y is",y)

Note that the return value of the function inc is not assigned to any variable. Therefore, the return value is
thrown away and the output becomes:

y is 4

The variable y is unchanged because it was never reassigned.

6.4 About Patterns

As you can see from above, not all patterns are good ones. However, we often mistakenly use bad patterns
when programming. If we can recognize those bad patterns more readily, our job of producing a correctly
working program is greatly simplified.
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Chapter 7

Conditionals

Conditionals implement decision points in a computer program. Suppose you have a program that performs
some task on an image. You may well have a point in the program where you do one thing if the image is a
JPEG and quite another thing if the image is a GIF file. Likely, at this point, your program will include a
conditional expression to make this decision.

Before learning about conditionals, it is important to learn about logical expressions. Such expressions are
the core of conditionals and loops.1

7.1 Logical expressions

A logical expression evaluates to a truth value, in essence true or false. For example, the expression x > 0
resolves to true if x is positive and false if x is negative or zero. In Python, truth is represented by the symbol
True and falsehood by the symbol False. Together, these two symbols are known as Boolean values.

One can assign truth values to variables:

>>> c = -1

>>> z = (c > 0);

>>> z

False

Here, the variable z would be assigned a value of True if c is positive; since c is negative, it is assigned a
value of False. The parentheses are added to improve readability.

7.2 Logical operators

Python has the following logical operators:

1We will learn about loops in the next chapter.
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== equal to
!= not equal to
>= greater than or equal to
> greater than
< less than
<= less than or equal to
and both must be true
or one or both must be true
not reverses the truth value

The first six operators are used for comparing two things, while the next two operators are the glue that
joins up simpler logical expressions into more complex ones. The last operator is used to reverse a logical
value from True to False and vice versa.

Beginning programmers often confuse the = operator, which is the assignment operator, with the == operator,
which is the equality operator. Remember, assignment is used to change the value of a variable while equality
can be used to test the value of a variable (without changing its value). Fortunately, Python does detects
many attempts to use assignment when equality was intended and will complain appropriately.

7.3 Short circuiting

When evaluating a logical expression, Python evaluates the expression from left to right and stops evaluating
as soon as it finds out that the expression is definitely true or definitely false. For example, when encountering
the expression:

x != 0 and y / x > 2

if x has a value of 0, the subexpression on the left side of the and connective resolves to false. At this point,
there is no way for the entire expression to be true (since both the left hand side and the right hand side
must be true for an and expression to be true), so the right hand side of the expression is not evaluated.
Note that this expression protects against a divide-by-zero error.

7.4 If expressions

Python’s if expressions are used to conditionally execute code, depending on the truth value of what is
known as the test expression. One version of if has a block of code following the test expression:

Here is an example:

if (name == "John"):

print("What a great name you have!")

In this version, when the test expression is true (i.e., the string "John" is bound to the variable name), then
the code that is indented under the if is evaluated (i.e., the compliment is printed). The indented code is
known as a block and all lines in a block must be indented exactly the same amount2. If the test expression is
false, however the block is not evaluated. In this text, we will enclose the test expression in parentheses even
though it is not required by Python. We do that because some important programming languages require
the parentheses and we want to get you into the habit.

2In general, it is a bad idea to vary the kinds of characters that make up an indentation. One should use just spaces or just
tabs, but should not use an indentation made up of spaces and tabs.
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Here is another form of if:

if (major == "Computer Science"):

print("Smart choice!")

else:

print("Ever think about changing your major?")

In this version, if has two blocks, one following the test expression and one following the else keyword. Note
the colons that follow the test expression and the else; these are required by Python. As before, the first
block is evaluated if the test expression is true. If the test expression is false, however, the second block is
evaluated instead.

7.5 if-elif-else chains

You can chain if statements together using the elif keyword, as in:

if (bases == 4):

print("HOME RUN!!!")

elif (bases == 3):

print("Triple!!")

elif (bases == 2):

print("double!")

elif (bases == 1):

print("single")

else:

print("out")

The block that is eventually evaluated is directly underneath the first test expression that is true, reading
from top to bottom. If no test expression is true, the block associated with the else is evaluated.

What is the difference between if-elif-else chains and a sequence of unchained ifs? Consider this rewrite of
the above code:

if (bases == 4):

print("HOME RUN!!!");

if (bases == 3):

print("Triple!!");

if (bases == 2):

print("double!");

if (bases == 1):

print("single");

else:

print("out");

In the second version, there are four if statements and the else belongs to the last if. Does this behave exactly
the same? The answer is, it depends. Suppose the value of the variable bases is 0. Then both versions print:

out

However, if the value of bases is 3, for example, the first version prints:
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triple!!

while the second version prints:

triple!!

out

Why the difference? In the first version, a subsequent test expression is evaluated only if all previous test
expressions evaluated to false. Once a test expression evaluates to true in an if-elif-else chain, the associated
block is evaluated and no more processing of the chain is performed. Like the and and or Boolean
connectives, an if-elif-else chain short-circuits.

In contrast, the sequences of ifs in the rewrite are independent; there is no short-circuiting. When the test
expression of the first if fails, the test expression of the second if succeeds and triple!! is printed. Now
the test expression of the third if is tested and fails as well as the test expression of the fourth if. But since
the fourth if has an else, the else block is evaluated and out is printed.

It is important to know when to use an if-elif-else chain and when to use a sequence of independent ifs. If
there should be only one outcome, then use an if-elif-else chain. Otherwise, use a sequence of ifs.

Practice with Boolean expressions

Here is some practice on writing complex Boolean expressions. Your task is to convert the English description
into a Python Boolean expression. The variables to be used in the expressions are:

dogSize with string values "small", "medium", and "large"

dogHasSpots with Boolean values True or False
dogAge with positive integer values
dogColor with string values "white", "black", "red", and "brown"

catSize with string values "small", "medium", and "large"

catHasSpots with Boolean values True or False
catColor with string values "white", "black", "orange", and "tabby"

catEyeColor with string values "green", "brown", "blue"
catAge with positive integer values

An old dog is one with an age greater than seven years while an old cat has an age greater than or equal to
nine years. A cat and a dog are young if they are younger than three years old.

Example:

Write a boolean expression that captures “Dogs that are large and have spots or cats that are white but do
not have blue eyes.”

Answer:

(dogSize == "large" and dogHasSpots) or (catColor == "white" and catEyeColor != "blue")
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Functions

Recall from Chapter ?? the series of expressions we evaluated to find the y-value of a point on the line:

y = 5x - 3

First, we assigned values to the slope, the x-value, and the y-intercept:

>>> m = 5

>>> x = 9

>>> b = -3

Once those variables have been assigned, we can compute the value of y:

>>> y = m * x + b

>>> y

42

Now, suppose we wished to find the y-value corresponding to a different x-value or, worse yet, for a different
x-value on a different line. All the work we did would have to be repeated. A function is a way to encapsulate
all these operations so we can repeat them with a minimum of effort.

8.1 Encapsulating a series of operations

First, we will define a not-too-useful function that calculates y give a slope of 5, a y-intercept of -3, and an
x-value of 9 (exactly as above). We do this by wrapping a function around the sequence of operations above.
The return value of this function is the computed y value:

def y():

m = 5

x = 9

b = -3

return m * x + b

There are a few things to note. The keyword def indicates that a function definition is occurring. The name
of this particular function is y. The names of the things being sent to the function are given between the

37
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parentheses; since there is nothing between the parentheses, we don’t need to send any information to this
function when we use it. Together, the first line is known as the function signature, which tells you the name
of the function and how many values it expects to be sent when it is used.

The stuff indented from the first line of the function definition is called the function body and is the code
that will be evaluated (or executed) when the function is used. You must remember this: the function body
is not evaluated until the function is actually used.

Once the function is defined, we can find the value of y repeatedly. Let’s assume the function was entered
into the file named line.py.

First we import the code in line.py with the from statement:

>>> from line import * # not line.py!

This makes the python interpreter behave as if we had typed in the function definition residing in line.py
directly into the interpreter. Note, we omit the .py extension in the import statement.

After importing the y function, the next thing we do is use it:

>>> y()

42

>>> y()

42

The use of a function is known as a function call. Most function calls look similar: the name of the function
to be called followed by a parenthesized list of information to send the function so that it can do its job.
Thus, the parentheses after the y indicate that we wish to call the y function and get its value. Because
we designed the function to take no information when called, we do not place any information between the
parentheses.

Note that when we call the y function again, we get the exact same answer.

The y function, as written, is not too useful in that we cannot use it to compute similar things, such as the
y-value for a different value of x. This is because we “hard-wired” the values of b, x, and m in the definition
of the function. We can improve the y function by passing in the value of x instead of hard-wiring the value
to 9.

8.2 Passing arguments

A hallmark of a good function is that it lets you compute more than one thing. We can modify our y function
to take in the value of x in which we are interested. In this way, we can compute more than one value of y.
We do this by passing in some information. This information that is passed to a function in a function call
is known as an argument1, in this case, the value of x.

def y(x):

slope = 5

intercept = -3

return slope * x + intercept

1The information that is passed into a function is collectively known as arguments. The arguments are then bound to the
variables that are found after the function name in the function definition.
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Note that we have moved the variable x from the body of the function to between the parentheses. We have
also refrained from giving it a value since its value is to be sent to the function when the function is called.
What we have done is to parameterize the function to make it more general and more useful. The variable
x is now called a formal parameter since it sits between the parentheses in the first line of the function
definition.

Now we can compute y for an infinite number of x’s:

>>> from line.py import *

>>> y(9)

42

>>> y(0)

-3

>>> y(-2)

-13

What if we wish to compute a y-value for a given x for a different line? One approach would be to pass in
the slope and intercept as well as x:

def y(x,m,b):

return m * x + b

Now we need to pass even more information to y when we call it:

>>> from line.py import *

>>> y(9,5,-3)

42

>>> y(0,5,-3)

-3

If we wish to calculate using a different line, we just pass in the new slope and intercept along with our value
of x. This certainly works as intended, but is not the best way. One problem is that we keep on having
to type in the slope and intercept even if we are computing y-values on the same line. Anytime you find
yourself doing the same tedious thing over and over, be assured that someone has thought of a way to avoid
that particular tedium. If so, how do we customize our function so that we only have to enter the slope
and intercept once per particular line? We will explore one way for doing this. In reading further, it is not
important if you understand all that is going on. What is important is that you know you can use functions
to run similar code over and over again.

8.3 Creating functions on the fly (ADVANCED)

Since creating functions is hard work (lots of typing) and Computer Scientists avoid unnecessary work like
the plague, somebody early on got the idea of writing a function that itself creates functions! Brilliant! We
can do this for our line problem. We will tell our creative function to create a y function for a particular
slope and intercept! While we are at it, let’s change the variable names m and b to slope and intercept,
respectively:
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def makeLine(slope,intercept):

def y(x):

return slope * x + intercept

return y # the value of y is returned, y is NOT CALLED!

The makeLine function creates a y function and then returns it. Note that this returned function y takes
one value when called, the value of x.

So our creative makeLine function simply defines a y function and then returns it. Now we can create a
bunch of different lines:

>>> from line.py import *

>>> a = makeLine(5,-3)

>>> b = makeLine(6,2)

>>> a(9)

42

>>> b(9)

56

>>> a(9)

42

Notice how lines a and b remember the slope and intercept supplied when they were created.2 While this
is decidedly cool, the problem is many languages (C, C++, and Java included3) do not allow you to define
functions that create other functions. Fortunately, Python does allow this.

While this might seem a little mind-boggling, don’t worry. The things you should take away from this are:

• functions encapsulate calculations

• functions can be parameterized

• functions are defined so that they may be called

• functions return values

This last point is very important. Whoever calls a function needs to handle the return value either by
assigning it to a variable or by passing it immediately to another function (nested function calls). Here is
an example of the former:

y = square(x)

z = square(y)

and here is an example of both the former and the latter:

z = square(square(x))

Both approaches yield identical results.

2The local function y does not really remember these values, but for an introductory course, this is a good enough explanation.
3C++ and Java, as well as Python, give you another approach, objects. We will not go into objects in this course, but you

will learn all about them in your next programming course.
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8.4 The Function and Procedure Patterns

When a function calculates (or obtains) a value and returns it, we say that it implements the function
pattern. If a function does not have a return value, we say it implements the procedure pattern.

Here is an example of the function pattern:

def square(x):

return x * x

This function takes a value, stores it in x, computes the square of x and returns the result of the computation.

Here is an example of the procedure pattern:

def greeting(name):

print("hello,",name)

return "done"

We use a special return value to indicate procedures, the string "done". Returning "done" is meant to
indicate the return value should not be used.

Almost always, a function that implements the function pattern does not print anything, while a function
that implements the procedure pattern often does4. A common function that implements the procedure
pattern is the main function5.

A mistake often made by beginning programmers is to print a calculated value rather than to return it. So,
when defining a function, you should ask yourself, should I implement the function pattern or the procedure
pattern?

Most of the functions you will implement in this class follow the function pattern.

Another common mistake is to inadvertently implement a procedure pattern when a function pattern is called
for. This happens when the return keyword is omitted.

def psquare(x):

x * x

While the above code looks like the function pattern, it is actually a procedure pattern. What happens is the
value x ∗ x is calculated, but since it is not returned, the newly calculated value is thrown away (remember
the throw-away pattern?).

Calling this kind of function yields a surprising result:

>>> x = psquare(4)

>>>print(x)

None

4Many times, the printing is done to a file, rather than the console.
5This is not strictly true. In most operating systems, a program is expected to return an error code, if the program was not

able to run to completion. Thus, raising an exception (see the chapter on error checking), will almost always cause a non-zero
error code to be returned to the operating system. What should a program return if no errors are encountered? A zero. You
can remember this saying to your self, “zero errors”. Thus, in this text, main functions will always return zero. Note that the
main’s return statement will not be reached if an exception occurs.
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When you do not specify a return value, Python will supply one for you anyway. This supplied value is the
special symbol None. Since psquare did not explicitly return a value, None was returned and assigned to the
variable x. However, you should always use an explicit return.

Usually, the procedure pattern causes some side-effect to happen (like printing). A procedure like psquare,
which has no side-effect, is a useless function.
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Python Programs and Using Files

After a while, it gets rather tedious to cut and paste into the Python interpreter. A more efficient method
is to store your program in a text file and then load the file.

I use vim as my text editor. Vim is an editor that was written by programmers for programmers (emacs is
another such editor) and serious Computer Scientists and Programmers should learn vim (or emacs).

9.1 Your first program

Create a text file named hello.py. The name really doesn’t matter and doesn’t have to end in .py (the .py is
a convention to remind us this file contains Python source code). Place in the file:

print("hello, world!");

Save your work and exit the text editor.

Now execute the following command at the system prompt (not the Python interpreter prompt!):

python3 hello.py

You should see the phrase:

hello, world!

displayed on your console. Here’s a trace using Linux:

lusth@warka:~$ python3 hello.py

hello, world!

lusth@warka:~$

The lusth@warka: $ is my system prompt.

9.2 Vim and Python

Move into your home directory and list the files found there with this command:
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ls -al

If you see the file .exrc, then all is well and good. If you do not, then run the following command to retrieve
it:

(cd ; wget troll.cs.ua.edu/cs150/.exrc)

This configures vim to understand Python syntax and to color various primitives and keywords in a pleasing
manner.

9.3 A Neat Macro

One of the more useful things you can do is set up a vim macro. Edit the file .exrc in your home directory
and find these lines:

map @ :!python %^M

map # :!python %

set ai sm sw=4

If you were unable to download the file in the previous section, just enter the lines above in the .exrc file.

The first line makes the ’@’ key, when pressed, run the Python interpreter on the file you are currently
editing (save your work first before tapping the @ key). The ^M part of the macro is not a two character
sequence (^ followed by M), but a single character made by typing <Ctrl>-v followed by <Ctrl>-m. It’s
just when you type <Ctrl>-v <Ctrl>-m, it will display as ^M. The second line defines a similar macro that
pauses to let you enter command-line arguments to your Python program. The third line sets some useful
parameters: autoindent and showmatch. The expression sw=4 sets the indentation to four spaces.

9.4 Writing Python Programs

A typical Python program is composed of two sections. The first section is composed of variable and function
definitions. The next section is composed of statements, which are Python expression. Usually the latter
section is reduced to a single function call (we’ll see an example in a bit).

The hello.py file above was a program with no definitions and a single statement. A Python program
composed only of definitions will usually run with no output to the screen. Such programs are usually
written for the express purpose of being included into other programs.

Typically, one of the function definitions is a function named main (by convention); this function takes no
arguments. The last line of the program (by convention) is a call to main. Here is a rewrite of hello.py using
that convention.

def main():

println("hello, world!")

return 0

main()

This version’s output is exactly the same as the previous version. We also can see that main implements the
function pattern since it has a non-None return value. Generally, a zero return value for main means that no
errors were encountered. Typically, non-zero return values for main are used to indicate errors, with each
value associated with a specific error.
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9.5 Order of definitions

A function (or variable) must be created or defined1 before it is used. This program will generate an error:

main() #undefined variable error

def main():

y = 3

x = y * y

print("x is",x)

return 0

since main can’t be called until it is defined. This program is legal, however:

def main():

x = f(3)

print("x is",x)

return 0

def f(z):

return z * z

main()

because even though the body of main refers to function f before function f is defined, function f is defined
by the time function main is called (the last statement of the program).

Here is the order of steps taken when this program is run:

1. the function main is defined

2. the function f is defined

3. the function main is called

(a) the statement x = f(3) is evaluated

(b) the function f is called

i. the formal parameter z is set to 3

ii. the square of z is computed

iii. the function f returns the value 9

(c) x is assigned the value 9

(d) the statement print("x is",x) is evaluated

(e) the text "x is 9" is printed

(f) the function main returns zero

4. the program ends

1From now on, we will use the word defined.
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At this point, you should type this program into a file and then run it. If you do so, you should see the
following output, as expected:

x is 9

A useful trick to understanding the flow of a program is to place print statements throughout the code and
try to guess, before running the program, the order in which those added statements display text to the
console.

9.6 Importing code

One can include one file of Python code into another. The included file is known as a module. The import
statement is used to include a module:

from moduleX.py import *

where moduleX.py is the name of the file containing the Python definitions you wish to include. Usually
import statements are placed at the top of the file. Including a module imports all the code in that module,
as if you had written it in the file yourself.

If moduleX.py has import statements, those modules will be included in the file as well.

Import statements often are used to include the standard Python libraries.
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Input and Output

Generally all computational entities, be it variables, functions, or programs, require some sort of input and
output. Input roughly corresponds to the process of supplying data and output roughly corresponds to the
process of retrieving data. For a variable, assignment is the way values (data) are supplied to the variable,
while referencing the variable (as part of an expression) is the way that data is retrieved. For functions, the
input is the set of arguments that are supplied in a function call, while the output of a function is its return
value. For programs, input refers to pulling in data and output refers to pushing out results. In this chapter,
we focus on managing the input and output of programs.

10.1 Input

Input is the process of obtaining data that a program needs to perform its task. There are generally three
ways for a program to obtain data:

• interactively, by querying the user for information

• via the command line, by accessing an array of command line arguments

• via a file, by opening a file and reading its contents

We examine these three approaches in turn.

10.1.1 Reading from the keyboard

To read from the keyboard, one uses the input function:

name = input("What is your name? ")

The input function prints the given message to the console and waits until a response is typed. In the example
above, the message is "What is your name? "; this message is known as a prompt. The input function (as
of Python3) always returns a string. If you wish to read an integer, you can wrap the call to input in a call
to int:

age = int(input("How old are you? "))

Other conversion functions similar to int are float, which converts the string input returns to a real number,
and eval, which converts a string into its Python equivalent. For example, we could substitute eval for int or
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float and we would get the exact same result, provided an integer or a real number, respectively, were typed
in response to input prompt. The eval function can even to some math for you:

>>> eval("3 + 7")

10

10.1.2 Reading From the command line

The second way to pass information to a program is through command-line arguments. The command line
is the line typed in a terminal window that runs a python program (or any other program). Here is a typical
command line on a Linux system:

lusth@sprite:~/l1/activities$ python3 prog3.py

Everything up to and including the dollar sign is the system prompt. As with all prompts, it is used to
signify that the system is waiting for input. The user of the system (me) has typed in the command:

python3 prog3.py

in response to the prompt. Suppose prog3.py is a file with the following code:

import sys

def main():

print("command-line arguments:")

print(" ",sys.argv)

return 0

main()

In this case, the output of this program would be:

command-line arguments:

['prog3.py']

Note that the program imports the sys module and when the value of the variable sys.argv is printed, we see
its value is:

['prog3.py']

This tells us that sys.argv points to an array (because of the square brackets) and that the program file
name, as a string, is found in this array.

Any whitespace-delimited tokens following the program file name are stored in sys.argv along with the name
of the program being run by the Python interpreter. For example, suppose we run prog3.py with the this
command:
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python3 prog3.py 123 123.4 True hello, world

Then the output would be:

command-line arguments:

['prog3.py', '123', '123.4', 'True', 'hello,', 'world']

From this result, we can see that all of the tokens are stored in sys.argv and that they are stored as strings,
regardless of whether they look like some other entity, such as integer, real number, or Boolean.

If we wish for "hello, world" to be a single token, we would need to enclose the tokens in quotes:

python3 prog3.py 123 123.4 True "hello, world"

In this case, the output is:

command-line arguments:

['prog3.py', '123', '123.4', 'True', 'hello, world']

There are certain characters that have special meaning to the system. A couple of these are ’*’ and ’;’. To
include these characters in a command-line argument, they need to be escaped by inserting a backslash prior
to the character. Here is an example:

python3 prog3.py \; \* \\

To insert a backslash, one escapes it with a backslash. The output from this command is:

command-line arguments:

['prog3.py', ';', '*', '\\']

Although it looks as if there are two backslashes in the last token, there is but a single backslash. Python
uses two backslashes to indicate a single backslash.

Counting the command line arguments

The number of command-line arguments (including the program file name) can be found by using the len
(length) function. If we modify prog3.py’s main function to be:

def main():

print("command-line argument count:",len(sys.argv))

print("command-line arguments:")

print(" ",sys.argv)

return 0

and enter the following command at the system prompt:
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python3 prog3.py 123 123.4 True hello world

we get this output:

command-line argument count: 6

command-line arguments:

['prog3.py', '123', '123.4', 'True', 'hello', 'world']

As expected, we see that there are six command-line arguments, including the program file name.

Accessing individual arguments

As with most programming languages and with Python arrays, the individual tokens in sys.argv are accessed
with zero-based indexing. To access the program file name, we would use the expression:

sys.argv[0]

To access the first command-line argument after the program file name, we would use the expression:

sys.argv[1]

Let’s now modify prog3.py so that it prints out each argument individually. We will using a construct called
a loop to do this. You will learn about looping later, but for now, the statement starting with for generates
all the legal indices for sys.argv, from zero to the length of sys.argv minus one. Each index, stored in the
variable i, is then used to print the argument stored at that location in sys.argv:

def main():

print("command-line argument count:",len(sys.argv))

print("command-line arguments:")

for i in range(0,len(sys.argv),1):

print(" ",i,":",sys.argv[i])

return 0;

Given this command:

python3 prog3.py 123 123.4 True hello world

we get the following output:

command-line argument count: 6

command-line arguments:

0 : prog3.py

1 : 123

2 : 123.4

3 : True

4 : hello

5 : world

This code works no matter how many command line arguments are sent. The superior student will ascertain
that this is true.
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What command-line arguments are

The command line arguments are stored as strings. Therefore, you must use the int, float, or eval functions
if you wish to use any of the command line arguments to integers, real numbers or Booleans, as examples.

10.1.3 Reading from files

The third way to get data to a program is to read the data that has been previously stored in a file.

Python uses a file pointer system in reading from a file. To read from a file, the first step is to obtain a
pointer to the file. This is known as opening a file. The file pointer will always point to the first unread
character in a file. When a file is first opened, the file pointer points to the first character in the file.

Reading files using file pointer methods

A Python file pointer has a number of associated functions for reading in parts or all of a file. Suppose we
wish to read from a file named data. We first obtain a file pointer by opening the file like this:

fp = open("data","r")

The open function takes two arguments, the name of the file and the kind of file pointer to return. We store
the file pointer in a variable named fp (a variable name commonly used to hold a file pointer). In this case,
we wish for a reading file pointer, so we pass the string "r". We can also open a file for writing; more on
that in the next section.

Next, we can read the entire file into a single string with the read method:

text = fp.read()

After this statement is evaluated, the variable text would point to a string containing every character in the
file data. We call read a method, rather than a function (which it is), to indicate that it is a function that
belongs to a file pointer object, which fp is. You will learn about objects in a later class, but the “dot”
operator is a clue that the thing to the left of the dot is an object and the thing to the right is a method (or
simple variable) that belongs to the object.

When we are done reading a file, we close it:

fp.close()

Instead of reading all the file in at once using the read method, it is sometimes useful to read a file one line
at a time. One uses the readline method for this task, but the readline method is not very useful until we
learn about loops in a later chapter.

Using a scanner

A scanner is a reading subsystem that allows you to read whitespace-delimited tokens from a file. Whitespace
are those characters in a text file that are generally not visible: spaces, tabs, and newlines. For example,
this sentence:

I am a sentence!
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is composed of four whitespace delimited tokens: I, am, a, and sentence!.

Typically, a scanner is used just like a file pointer, but is far more flexible. Suppose we wish to read from a
file named data. We would open the file with a scanner like this:

s = Scanner("data")

The Scanner function takes a single argument, the name of the file, and returns a scanner object, which can
be used to read the tokens in the file.

Suppose the file data contained:

True 3 -4.4

"hello there"

ack!

The file contains six whitespace-delimited tokens: True, 3, -4.4, "hello, followed by there", and ack!. We
can use the scanner to read each of the tokens using the readtoken method.

from scanner import *

def main():

s = Scanner("data")

b = s.readtoken()

i = s.readtoken()

f = s.readtoken()

str1 = s.readtoken()

str2 = s.readtoken()

t = s.readtoken()

print("The type of",b,"is",type(b))

print("The type of",i,"is",type(i))

print("The type of",f,"is",type(f))

print("The type of",str1,"is",type(str1))

print("The type of",str2,"is",type(str2))

print("The type of",t,"is",type(t))

s.close()

return 0;

main()

To run this program, you will first need to get a scanner for Python. You can obtain a scanner by issuing
this command:

wget troll.cs.ua.edu/cs150/book/scanner.py

The scanner.py file needs to reside in the same directory as the program that imports it.

The program, as written, runs fine, yielding the following output:
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The type of True is <class 'str'>

The type of 3 is <class 'str'>

The type of -4.4 is <class 'str'>

The type of "hello is <class 'str'>

The type of there" is <class 'str'>

The type of ack! is <class 'str'>

The type function tells us what kind of literal is passed to it. We can see that every token is read in as a
string, from the <class 'str'> return value from the type function.

Here is a revised version that takes advantage of the full power of the scanner; the program reads in the
objects as they appear, a Boolean, integer, float, string, and token:

from scanner import *

def main():

s = Scanner("data")

b = s.readbool()

i = s.readint()

f = s.readfloat()

str = s.readstring()

t = s.readtoken()

print("The type of",b,"is",type(b))

print("The type of",i,"is",type(i))

print("The type of",f,"is",type(f))

print("The type of",str,"is",type(str))

print("The type of",t,"is",type(t))

s.close()

return 0;

main()

The output of the revised program is:

The type of True is <class 'bool'>

The type of 3 is <class 'int'>

The type of -4.4 is <class 'float'>

The type of "hello there" is <class 'str'>

The type of ack! is <class 'str'>

The methods readbool, readint, readfloat convert the tokens they read into the appropriate type. Thus,
readbool returns a Boolean, not a string, readint returns an integer, and so on. The readstring method will
read a string delimited by double quotes as a single token. Note that the double quotes are considered part
of the string; to remove them, one can use the following technique:

str = s.readstring()

str = str[1:-1] # a slice, all but the first and last characters

If any of the reading methods fail (i.e., trying to read an integer when there is no integer at that point), the
read methods return the empty string. As a final note, always remember to close a scanner when you are
done with it, as in:



54 CHAPTER 10. INPUT AND OUTPUT

s.close()

10.2 Output

Once a program has processed its input, it needs to make its output known, either by displaying results to
the user or by storing the results in a file.

10.2.1 Writing to the console

One uses the print function to display text on the console, for benefit of the user of the program. The print
function is variadic, which means it can take a variable number of arguments. The print function has lots
of options, but we will be interested in only two, sep and end. The sep (for separator) option specifies what
is printed between the arguments sent to be printed. If the sep option is missing, a space is printed between
the values received by print:

>>> print(1,2,3)

1 2 3

>>>

If we wish to use commas as the separator, we would do this:

>>> print(1,2,3,sep=",")

1,2,3

>>>

If we wish to have no separator, we bind sep to an empty string:

>>> print(1,2,3,sep="")

123

>>>

The end option specifies what be printed after the arguments are printed. If you don’t supply a end option,
a newline is printed by default. This call to print prints an exclamation point and then a newline at the end:

>>> print(1,2,3,end="!\n")

1 2 3!

>>>

If you don’t want anything printed at the end, bind end to an empty string:

>>> print(1,2,3,end="")

1 2 3>>>

Notice how the Python prompt ends up on the same line as the values printed.

You can combine the sep and end options.
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Printing quote characters

Suppose I have the string:

str = "Hello"

If I print my string:

print(str)

The output looks like this:

Hello

Notice the double quotes are not printed. But suppose I wish to print quotes around my string, so that the
output looks like:

"Hello"

To do this, the print statement becomes:

print("\"",str,"\"",sep="")

If you need a refresher on what the string "\"" means, please see Chapters ??. The superior student will
ponder on the necessity of sep="".

10.3 Writing to a file

Python also requires a file pointer to write to a file. The open function is again used to obtain a file pointer,
but this time we desire a writing file pointer, so we send the string "w" as the second argument to open:

fp = open("data.save","w")

Now the variable fp points to a writing file object, which has a method named write. The only argument
write takes is a string. That string is then written to the file. Here is a function that copies the text from
one file into another:

def copyFile(inFile,outFile):

in = open(inFile,"r")

out = open(outFile,"w")

text = in.read();

out.write(text);

in.close()

out.close()

return "done"
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Opening a file in order to write to it has the effect of emptying the file of its contents soon as it is opened.
The following code deletes the contents of a file (which is different than deleting the file):

# delete the contents

fp = open(fileName,"w")

fp.close()

We can get rid of the variable fp by simply treating the call to open as the object open returns, as in:

# delete the contents

open(fileName,"w").close()

If you wish to start writing to a file, but save what was there previously, call the open function to obtain an
appending file pointer:

fp = open(fileName,"a")

Subsequent writes to fp will append text to what is already there.
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More about Functions

We have already seen some examples of functions, some user-defined and some built-in. For example, we
have used the built-in functions, such as * and defined our own functions, such as square. In reality, square
is not a function, per se, but a variable that is bound to the function that multiplies two numbers together.
It is tedious to say “the function bound to the variable square”, however, so we say the more concise (but
technically incorrect) phrase “the square function”.

11.1 Built-in Functions

Python has many built-in, or predefined, functions. No one, however, can anticipate all possible tasks that
someone might want to perform, so most programming languages allow the user to define new functions.
Python is no exception and provides for the creation of new and novel functions. Of course, to be useful,
these functions should be able to call built-in functions as well as other programmer created functions.

For example, a function that determines whether a given number is odd or even is not built into Python but
can be quite useful in certain situations. Here is a definition of a function named isEven which returns true
if the given number is even, false otherwise:

>>> def isEven(n):

... return n % 2 == 0

...

>>>

>>> isEven(42)

True

>>> isEven(3)

False

>>> isEven(3 + 5)

True

We could spend days talking about about what’s going on in these interactions with the interpreter. First,
let’s talk about the syntax of a function definition. Later, we’ll talk about the purpose of a function definition.
Finally, will talk about the mechanics of a function definition and a function call.
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11.2 Function syntax

Recall that the words of a programming language include its primitives, keywords and variables. A function
definition corresponds to a sentence in the language in that it is built up from the words of the language. And
like human languages, the sentences must follow a certain form. This specification of the form of a sentence
is known as its syntax. Computer Scientists often use a special way of describing syntax of a programming
language called the Backus-Naur form (or bnf). Here is a high-level description of the syntax of a Python
function definition using bnf:

functionDefinition : signature ':' body

signature : 'def' variable '(' optionalParameterList ')'

body : block

optionalParameterList : *EMPTY*

| parameterList

parameterList : variable

| variable ',' parameterList

block: definition

| definition block

| statement

| statement block

The first bnf rule says that a function definition is composed of two pieces, a signature and a body, separated
by the colon character (parts of the rule that appear verbatim appear within single quotes). The signature
starts with the keyword def followed by a variable, followed by an open parenthesis, followed by something
called an optionalParameterList, and finally followed by a close parenthesis. The body of a function something
called a block, which is composed of definitions and statements. The optionalParameterList rule tells us that
the list of formal parameters can possibly be empty, but if not, is composed of a list of variables separated
by commas.

As we can see from the bnf rules, parameters are variables that will be bound to the values supplied in the
function call. In the particular case of isEven, from the previous section, the variable x will be bound to the
number whose evenness is to be determined. As noted earlier, it is customary to call x a formal parameter of
the function isEven. In function calls, the values to be bound to the formal parameters are called arguments.

11.3 Function Objects

Let’s look more closely at the body of isEven:

def isEven(x):

return x % 2 == 0

The % operator is bound to the remainder or modulus function. The == operator is bound to the equality
function and determines whether the value of the left operand expression is equal to the value of the right
operand expression, yielding true or false as appropriate. The boolean value produced by == is then
immediately returned as the value of the function.
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When given a function definition like that above, Python performs a couple of tasks. The first is to create
the internal form of the function, known as a function object, which holds the function’s signature and body.
The second task is to bind the function name to the function object so that it can be called at a later time.
Thus, the name of the function is simply a variable that happens to be bound to a function object. As noted
before, we often say ’the function isEven’ even though we really mean ’the function object bound to the
variable even?’.

The value of a function definition is the function object; you can see this by printing out the value of isEven:

>>> print(isEven)

<function isEven at 0x9cbf2ac>

>>> isEven = 4

>>> print(isEven)

4

Further interactions with the interpreter provide evidence that isEven is indeed a variable; we can reassign
its value, even though it is considered in poor form to do so.

11.4 Calling Functions

Once a function is created, it is used by calling the function with arguments. A function is called by supplying
the name of the function followed by a parenthesized, comma separated, list of expressions. The arguments
are the values that the formal parameters will receive. In Computer Science speak, we say that the values of
the arguments are to be bound to the formal parameters. In general, if there are n formal parameters, there
should be n arguments.1 Furthermore, the value of the first argument is bound to the first formal parameter,
the second argument is bound to the second formal parameter, and so on. Moreover, all the arguments are
evaluated before being bound to any of the parameters.

Once the evaluated arguments are bound to the parameters, then the body of the function is evaluated.
Most times, the expressions in the body of the function will reference the parameters. If so, how does the
interpreter find the values of those parameters? That question is answered in the next chapter.

11.5 Returning from functions

The return value of a function is the value of the expression following the return keyword. For a function
to return this expression, however, the return has to be reached. Look at this example:

def test(x,y):

if (y == 0):

return 0

else:

print("good value for y!")

return x / y

print("What?")

return 1

1For variadic functions, which Python allows for, the number of arguments may be more or less than the number of formal
parameters.
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Note that the == operator returns true if the two operands have the same value. In the function, if y is
zero, then the

return 0

statement is reached. This causes an immediate return from the function and no other expressions in the
function body are evaluated. The return value, in this case, is zero. If y is not equal to zero, a message
is printed and the second return is reached, again causing an immediate return. In this case, a quotient is
returned.

Since both parts of the if statement have returns, then the last two lines of the function:

print("What?")

return 1

are unreachable. Since they are unreachable, they cannot be executed under any conditions and thus serve
no purpose and can be deleted.
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Scope

A scope holds the current set of variables and their values. In Python, there is something called the global
scope. The global scope holds all the values of the built-in variables and functions (remember, a function
name is just a variable).

When you enter the Python interpreter, either by running it interactively or by using it to evaluate a program
in a file, you start out in the global scope. As you define variables, they and their values are added to the
global scope.

This interaction adds the variable x to the global scope:

>>> x = 3

This interaction adds two more variables to the global scope:

>>> y = 4

>>> def negate(z):

... return -z;

...

>>>

What are the two variables? The two variables added to the global scope are y and negate.

Indeed, since the name of a function is a variable and the variable negate is being bound to a function object,
it becomes clear that this binding is occurring in the global scope, just like y being bound to 4.

Scopes in Python can be identified by their indentation level. The global scope holds all variables defined
with an indentation level of zero. Recall that when functions are defined, the body of the function is indented.
This implies that variables defined in the function body belong to a different scope and this is indeed the
case. Thus we can identify to which scope a variable belongs by looking at the pattern of indentations. In
particular, we can label variables as either local or non-local with respect to a particular scope. Moreover,
non-local variables may be in scope or out of scope.

12.1 In Scope or Out

The indentation pattern of a program can tells us where variables are visible (in scope) and where they are
not (out of scope). We begin by first learning to recognizing the scopes in which variables are defined.
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12.1.1 The Local Variable Pattern

All variables defined at a particular indentation level or scope are considered local to that indentation level
or scope. In Python, if one assigns a value to a variable, that variable must be local to that scope. The
only exception is if the variable was explicitly declared global (more on that later). Moreover, the formal
parameters of a function definition belong to the scope that is identified with the function body. So within a
function body, the local variables are the formal parameters plus any variables defined in the function body.

Let’s look at an example. Note, you do not need to completely understand the examples presented in the
rest of the chapter in order to identify the local and non-local variables.

def f(a,b):

c = a + b

c = g(c) + X

d = c * c + a

return d * b

In this example, we can immediately say the formal parameters, a and b, are local with respect to the scope
of the body of function f. Furthermore, variables c and d are defined in the function body so they are local
as well, with respect to the scope of the body of function f. It is rather wordy to say “local with respect to
the scope of the body of the function f”, so Computer Scientists will almost always shorten this to “local
with respect to f” or just “local” if it is clear the discussion is about a particular function or scope. We will
use this shortened phrasing from here on out. Thus a, b, c, and d are local with respect to f. The variable f
is local to the global scope since the function f is defined in the global scope.

12.1.2 The Non-local Variable Pattern

In the previous section, we determined the local variables of the function. By the process of elimination,
that means the variables g, and X are non-local. The name of function itself is non-local with respect to its
body, f is non-local as well.

Another way of making this determination is that neither g nor X are assigned values in the function body.
Therefore, they must be non-local. In addition, should a variable be explicitly declared global, it is non-local
even if it is assigned a value. Here again is an example:

def h(a,b):

global c

c = a + b

c = g(c) + X

d = c * c + a

return d * b

In this example, variables a, b, and d are local with respect to h while c, g, and X are non-local. Even though
c is assigned a value, the declaration:

global c

means that c belongs to a different scope (the global scope) and thus is non-local.
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12.1.3 The Accessible Variable Pattern

A variable is accessible with respect to a particular scope if it is in scope. A variable is in scope if it is local
or was defined in a scope that encloses the particular scope. Some scope A encloses some other scope B if,
by moving (perhaps repeatedly) leftward from scope B, scope A can be reached. Here is example:

Z = 5

def f(x):

return x + Z

print(f(3))

The variable Z is local with respect to the global scope and is non-local with respect to f. However, we
can move leftward from the scope of f one indentation level and reach the global scope where Z is defined.
Therefore, the global scope encloses the scope of f and thus Z is accessible from f. Indeed, the global scope
encloses all other scopes and this is why the built-in functions are accessible at any indentation level.

Here is another example that has two enclosing scopes:

X = 3

def g(a)

def m(b)

return a + b + X + Y

Y = 4

return m(a % 2)

print(g(5))

If we look at function m, we see that there is only one local variable, b, and that m references three non-local
variables, a, X, and Y. Are these non-local variables accessible? Moving leftward from the body of m, we
reach the body of g, so the scope of g encloses the scope of m. The local variables of g are a, m, and Y, so
both a and Y are accessible in the scope of m. If we move leftward again, we reach the global scope, so the
global scope encloses the scope of g, which in turn encloses the scope of m. By transitivity, the global scope
encloses the scope of m, so X, which is defined in the global scope is accessible to the scope of m. So, all the
non-locals of m are accessible to m.

In the next section, we explore how a variable can be inaccessible.

12.1.4 The Tinted Windows Pattern

The scope of local variables is like a car with tinted windows, with the variables defined within riding in the
back seat. If you are outside the scope, you cannot peer through the car windows and see those variables.
You might try and buy some x-ray glasses, but they probably wouldn’t work. Here is an example:

z = 3

def f(a):

c = a + g(a)

return c * c
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print("the value of a is",a) #x-ray!

f(z);

The print statement causes an error:

Traceback (most recent call last):

File "xray.py", line 7, in <module>

print("the value of a is",a) #x-ray!

NameError: name 'a' is not defined

If we also tried to print the value of c, which is a local variable of function f, at that same point in the
program, we would get a similar error.

The rule for figuring out which variables are in scope and which are not is: you cannot see into an enclosed
scope. Contrast this with the non-local pattern: you can see variables declared in enclosing outer scopes.

12.1.5 Tinted Windows with Parallel Scopes

The tinted windows pattern also applies to parallel scopes. Consider this code:

z = 3

def f(a):

return a + g(a)

def g(x):

# starting point 1

print("the value of a is",a) #x-ray!

return x + 1

f(z);

Note that the global scope encloses both the scope of f and the scope of g. However, the scope of f does not
enclose the scope of g. Neither does the scope of g enclose the scope of f.

One of these functions references a variable that is not in scope. Can you guess which one? The function g
references a variable not in scope.

Let’s see why by first examining f to see whether or not its non-local references are in scope. The only local
variable of function f is a. The only referenced non-local is g. Moving leftward from the body of f, we reach
the global scope where where both f and g are defined. Therefore, g is visible with respect to f since it is
defined in a scope (the global scope) that encloses f.

Now to investigate g. The only local variable of g is x and the only non-local that g references is a. Moving
outward to the global scope, we see that there is no variable a defined there, therefore the variable a is not
in scope with respect to g.

When we actually run the code, we get an error similar to the following when running this program:

Traceback (most recent call last):

File "xray.py", line 11, in <module>



12.2. ALTERNATE TERMINOLOGY 65

f(z);

File "xray.py", line 4, in f

return a + g(a)

File "xray.py", line 8, in g

print("the value of a is",a) #x-ray!

NameError: global name 'a' is not defined

The lesson to be learned here is that we cannot see into the local scope of the body of function f, even if we
are at a similar nesting level. Nesting level doesn’t matter. We can only see variables in our own scope and
those in enclosing scopes. All other variables cannot be seen.

Therefore, if you ever see a variable-not-defined error, you either have spelled the variable name wrong, you
haven’t yet created the variable, or you are trying to use x-ray vision to see somewhere you can’t.

12.2 Alternate terminology

Sometimes, enclosed scopes are referred to as inner scopes while enclosing scopes are referred to as outer
scopes. In addition, both locals and any non-locals found in enclosing scopes are considered visible or in
scope, while non-locals that are not found in an enclosing scope are considered out of scope. We will use all
these terms in the remainder of the text book.

12.3 Three Scope Rules

Here are three simple rules you can use to help you figure out the scope of a particular variable:

• Formal parameters belong in

• The function name belongs out

• You can see out but you can’t see in (tinted windows).

The first rule is shorthand for the fact that formal parameters belong to the scope of the function body.
Since the function body is “inside” the function definition, we can say the formal parameters belong in.

The second rule reminds us that as we move outward from a function body, we find the enclosing scope
holds the function definition. That is to say, the function name is bound to a function object in the scope
enclosing the function body.

The third rule tells us all the variables that belong to ever-enclosing scopes are accessible and therefore can
be referenced by the innermost scope. The opposite is not true. A variable in an enclosed scope can not be
referenced by an enclosing scope. If you forget the directions of this rule, think of tinted windows. You can
see out of a tinted window, but you can’t see in.

12.4 Shadowing

The formal parameters of a function can be thought of as variable definitions that are only in effect when the
body of the function is being evaluated. That is, those variables are only visible in the body and no where
else. This is why formal parameters are considered to be local variable definitions, since they only have local
effect (with the locality being the function body). Any direct reference to those particular variables outside
the body of the function is not allowed (Recall that you can’t see in). Consider the following interaction
with the interpreter:



66 CHAPTER 12. SCOPE

>>> def square(a):

... return a * a

...

>>>

>>> square(4)

16

>>> a

NameError: name 'a' is not defined

In the above example, the scope of variable a is restricted to the body of the function square. Any reference
to a other than in the context of square is invalid. Now consider a slightly different interaction with the
interpreter:

>>> a = 10

>>> def almostSquare(a):

... return a * a + b

...

>>> b = 1

>>> almostSquare(4)

17

>>> a

10

In this dialog, the global scope has three variables added, a, almostSquare and b. In addition, the variable
serving as the formal parameter of almostSquare has the same name as the first variable defined in the
dialog. Moreover, the body of almostSquare refers to both variables a and b. To which a does the body of
almostSquare refer? The global a or the local a? Although it seems confusing at first, the Python interpreter
has no difficulty in figuring out what’s what. From the responses of the interpreter, the b in the body must
refer to the variable that was defined with an initial value of one. This is consistent with our thinking, since
b belongs to the enclosing scope and is accessible within the body of almostSquare. The a in the function
body must refer to the formal parameter whose value was set to 4 by the call to the function (given the
output of the interpreter).

When a local variable has the same name as a non-local variable that is also in scope, the local variable is
said to shadow the non-local version. The term shadowed refers to the fact that the other variable is in the
shadow of the local variable and cannot be seen. Thus, when the interpreter needs the value of the variable,
the value of the local variable is retrieved. It is also possible for a non-local variable to shadow another
non-local variable. In this case, the variable in the nearest outer scope shadows the variable in the scope
further away.

In general, when a variable is referenced, Python first looks in the local scope. If the variable is not found
there, Python looks in the enclosing scope. If the variable is not there, it looks in the scope enclosing the
enclosing scope, and so on.

In the particular example, a reference to a is made when the body of almostSquare is executed. The value of
a is immediately found in the local scope. When the value of b is required, it is not found in the local scope.
The interpreter then searches the enclosing scope (which in this case happens to be the global scope). The
global scope does hold b and its value, so a value of 1 is retrieved.
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Since a has a value of 4 and b has a value of 1, the value of 17 is returned by the function. Finally, the
last interaction with the interpreter illustrates the fact that the initial binding of a was unaffected by the
function call.

12.5 Modules

Often, we wish to use code that has already been written. Usually, such code contains handy functions that
have utility for many different projects. In Python, such collections of functions are known as modules. We
can include modules into our current project with the import statement, which we saw in Chapters ?? and
??.

The import statement has two forms. The first is:

from ModuleX import *

This statement imports all the definitions from ModuleX and places them into the global scope. At this
point, those definitions look the same as the built-ins, but if any of those definitions have the same name as
a built-in, the built-in is shadowed.

The second form looks like this:

import ModuleX

This creates a new scope that is separate from the global scope (but is enclosed by the global scope). Suppose
ModuleX has a definition for variable a, with a value of 1. Since a is in a scope enclosed by the global scope,
it is inaccessible from the global scope (you can’t see in):

>>> import ModuleX

>>> a

NameError: name 'a' is not defined

The direct reference to a failed, as expected. However, one can get to a and its value indirectly:

>>> import ModuleX

>>> ModuleX . a

1

This new notation is known as dot notation and is commonly used in object-oriented programming systems
to references pieces of an object. For our purposes, ModuleX can be thought of as a named scope and the
dot operator is used to look up variable a in the scope named ModuleX.

This second form of import is used when the possibility that some of your functions or variables have the
same name as those in the included module. Here is an example:

>>> a = 0

>>> from ModuleX import *

>>> a

1
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Note that the ModuleX’s variable a has shadowed the previously defined a. With the second form of import,
the two versions of a can each be referenced:

>>> a = 0

>>> import ModuleX

>>> a

0

>>> ModuleX . a

1



Chapter 13

Loops

Loops are used to repeatedly execute some code. The most basic loop structure in Python is the while loop,
an example of which is:

i = 0

while (i < 10):

print(i,end="")

i = i + 1

We see a while loop looks much like an if statement. The difference is that blocks belonging to ifs are
evaluated at most once whereas blocks associated with loops may be evaluated many many times. Another
difference in nomenclature is that the block of a loop is known as the body (like blocks associated with
function definitions). Furthermore, the loop test expression is known as the loop condition.

As Computer Scientists hate to type extra characters if they can help it, you will often see:

i = i + 1

written as

i += 1

The latter version is read as “increment i” and saves a whopping two characters of typing.

A while loop tests its condition before the body of the loop is executed. If the initial test fails, the body is
not executed at all. For example:

i = 10

while (i < 10):

print(i,end="")

i += 1

never prints out anything since the test immediately fails. In this example, however:

i = 0;

69
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while (i < 10):

print(i,end="")

i += 1

the loop prints out the digits 0 through 9:

0123456789

A while loop repeatedly evaluates its body as long as the loop condition remains true.

To write an infinite loop, use True as the condition:

while (True):

i = getInput()

print("input is",i)

process(i)

13.1 Other loops

There are many kinds of loops in Python, in this text we will only refer to while loops and for loops that
count, as these are commonly found in other programming languages. The while loop we have seen; here is
an example of a counting for loop:

for i in range(0,10,1):

print(i)

This loop is exactly equivalent to:

i = 0

while (i < 10):

print(i)

i += 1

In fact, a while loop of the general form:

i = INIT

while (i < LIMIT):

# body

...

i += STEP

can be written as a counting for loop:

for i in range(INIT,LIMIT,STEP):

# body

...
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The range function counts from INIT to LIMIT (non-inclusive) by STEP and these values are assigned to i,
in turn. After each assignment to i, the loop body is evaluated. After the last value is assigned to i and the
loop body evaluated on last time, the for loop ends.

In Python, the range function assumes 1 for the step if the step is omitted and assumes 0 for the initial value
and 1 for the step if both the initial value and step are omitted. However, in this text, we will always give
the initial value and step of the for loop explicitly.

For loops are commonly used to sweep through each element of an array:

for i in range(0,len(items),1):

print(items[i])

Recall the items in an array of n elements are located at indices 0 through n − 1. These are exactly the
values produced by the range function. So, this loop accesses each element, by its index, in turn, and thus
prints out each element, in turn. Since using an index of n in an array of n items produces an error, the
range function conveniently makes its given limit non-inclusive.

As stated earlier, there are other kinds of loops in Python, some of which, at times, are more convenient to
use than a while loop or a counting for loop. However, anything that can be done with those other loops
can be done with the loops presented here. Loops and arrays go very well together; the next sections detail
some common loop patterns involving arrays.

13.2 The counting pattern

The counting pattern is used to count the number of items in a collection. Note that the built-in function
len already does this for Python arrays, so counting the elements in an array is a bit of a waste of time.
Still, it is about the easiest loop to write, so let’s forge ahead1:

count = 0

for i in range(0,len(items),1):

count += 1

When the loop finishes, the variable count holds the number of items in the array. In general, the counting
pattern increments a counter every time the loop body is evaluated.

13.3 The filtered-count pattern

A variation on the counting pattern involves filtering. When filtering, we use an if statement to decide
whether we should count an item or not. Suppose we wish to count the number of even items in an array:

count = 0

for i in range(0,len(items),1):

if (items[i] % 2 == 0):

count += 1

When this loop terminates, the variable count will hold the number of even integers in the array of items.
The if makes sure the count is incremented only when the item of interest is even.

1We will see the utility of the counting pattern for lists, for which there is no equivalent len function, in a future chapter.
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13.4 The accumulate pattern

Similar to the counting pattern, the accumulate pattern updates a variable, not by increasing its value by
one, but by the value of an item. This loop, sums all the values in an array:

total = 0

for i in range(0,len(items),1):

total += items[i]

By convention, the variable total is used to accumulate the item values. When accumulating a sum, the total
is initialized to zero. When accumulating a product, the total is initialized to one2.

13.5 The filtered-accumulate pattern

Similar to the accumulate pattern, the filtered-accumulate pattern updates a variable only if some test is
passed. This function sums all the even values in a given array, returning the final sum:

def sumEvens(items):

total = 0

for i in range(0,len(items),1):

if (items[i] % 2 == 0):

total += items[i]

return total

As before, the variable total is used to accumulate the item values. As with a regular accumulating, total is
initialized to zero when accumulating a sum. The initialization value is one when accumulating a product
and the initialization value is the empty array when accumulating an array (see filtering below).

13.6 The search pattern

The search pattern is a slight variation of filtered-counting. Suppose we wish to see if a value is present in
an array. We can use a filtered-counting approach; if the count is greater than zero, we know that the item
was indeed in the array.

def find(target,items): # is target in items?

return occurrences(target,items) > 0

def occurrences(target,items):

count = 0

for i in range(0,len(items),1):

if (items[i] == target):

count = count + 1

return count

In this case, occurrences implements the filtered-count pattern and helps find do its job. We designate such
functions as occurrences and the like, helper functions. However, we can improve the efficiency of find by
having it partially implement the filtered-count, but short-circuiting the search once the target item is found.
We do this by returning from the body of the loop:

2The superior student will ascertain why this is so.
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def find(target,items):

for i in range(0,len(items),1):

if (items[i] == target):

return True # short-circuit!

return False

When the array is empty, we return false, as indicated by the last line of the function, because the loop
never runs and thus the return inside the loop can never be reached. In the same vein, if no item matches
the target, we cannot return true, and eventually the loop exits and false is returned.

As a beginning programmer, however, you should be wary of returning from the body of a loop. The reason
is most beginners end up defining the function this way instead:

def find(target,items):

for i in range(0,len(items),1):

if (items[i] == target):

return True

else:

return False

The behavior of this latter version of find is incorrect, but unfortunately, it appears to work correctly under
some conditions. If you cannot figure out why this version fails under some conditions and appears to succeed
under others, you most definitely should stay away from placing returns in loop bodies.

13.7 The extreme pattern

Often, we wish to find the largest or smallest value in an array. Here is one approach, which assumes that
the first item is the largest and then corrects that assumption if need be:

largest = items[0]

for i in range(0,len(items),1):

if (items[i] > largest):

largest = items[i]

When this loop terminates, the variable largest holds the largest value. We can improve the loop slightly
by noting that the first time the loop body evaluates, we compare the putative largest value against itself,
which is a worthless endeavor. To fix this, we can start the index variable i at 1 instead:

largest = items[0]

for i in range(1,len(items),1): #start comparing at index 1

if (items[i] > largest):

largest = items[i]

Novice programmers often make the mistake of initialing setting largest to zero and then comparing all values
against largest, as in:

largest = 0

for i in range(0,len(items),1):

if (items[i] > largest):

largest = items[i]
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This code appears to work in some cases, namely if the largest value in the array is greater than or equal to
zero. If not, as is the case when all values in the array are negative, the code produces an erroneous result
of zero as the largest value.

13.8 The extreme-index pattern

Sometimes, we wish to find the index of the most extreme value in an array rather than the actual extreme
value. In such cases, we assume index zero holds the extreme value:

ilargest = 0

for i in range(1,len(items),1):

if (items[i] > items[ilargest]):

ilargest = i

Here, we successively store the index of the largest value see so far in the variable ilargest.

13.9 The filter pattern

A special case of a filtered-accumulation is called filter. Instead of summing the filtered items (for example),
we collect the filtered items into an array. The new array is said to be a reduction of the original array.

Suppose we wish to extract the even numbers from an array. The code looks very much like the sumEvens
function, but instead of adding in the desired item, we make an array out of it and add it to the back of the
growing array of even numbers:

def extractEvens(items):

evens = []

for i in range(0,len(items),1):

if (isEven(items[i])):

evens.append(items[i])

return evens

Given an array of integers, extractEvens returns a (possibly empty) array of the even numbers:

>>> extractEvens([4,2,5,2,7,0,8,3,7])

[4, 2, 2, 0, 8]

>>> extractEvens([1,3,5,7,9])

[]

Note that our use of array concatenation makes our extractEvens function run very slowly for very large
arrays3. To speed up extractEvens, we will use the object nature of arrays and invoke the append method
to add an new element to the end of the existing array4. In Python, one invokes a method on an object by
using the dot operator. Generically, the expression:

o.f()

3When you take a course in data structures and algorithm analysis, you will see that the run time of extractEvens grows in
proportion to the square of the number of even elements in the list.

4A function that works on and is bundled with an object is often called a method. You will learn more about objects and
methods later in your academic career.



13.10. THE MAP PATTERN 75

means run method f on object o. Using the append method, our extractEvens function becomes:

def extractEvens(items):

evens = []

for i in range(0,len(items),1):

if (isEven(items[i])):

evens.append(items[i]) # method invocation

return evens

We can see that the append method implements the procedure pattern in that it modifies the evens array,
not returning anything. With this change, the extractEvens function will run much faster5.

13.10 The map pattern

Mapping is a task closely coupled with that of filtering, but rather than collecting certain items, as with the
filter pattern, we collect all the items. As we collect, however, we transform each item as we collect it. The
basic pattern looks like this:

def map(f,items):

result = []

for i in range(0,len(items),1):

transformed = f(items[i])

result.append(transformed)

return result

Here, function f is used to transform each item in the before it is added to the growing result.

Suppose we wish to subtract one from each element in an array. First we need a transforming function that
reduces its argument by one:

def decrement(x): return x - 1

Now we can “map” the decrement function over an array of numbers:

>>> map(decrement,[4,3,7,2,4,3,1])

[3, 2, 6, 1, 3, 2, 0]

13.11 The shuffle pattern

Sometimes, we wish to combine two arrays into a third array, This is easy to do with the concatenation
operator, +.

array3 = array1 + array2

5The reason is Python arrays are dynamic arrays, in that they grow larger as needed. If dynamic arrays are implemented
properly, then the total cost of all appends divided by the number of appends is a small constant value. The upshot is that
extractEvens now will in time proportional to the number of even values in the array, rather than the square of that number.
This is quite an improvement! Suppose the input array is composed solely of a million even numbers. We would expect our
new version of extractEvens to run, roughly, a million times faster than the original version.
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This places the first element in the second array after the last element in the first array. However, many
times we wish to intersperse the elements from the first array with the elements in the second array. This is
known as a shuffle, so named since it is similar to shuffling a deck of cards. When a deck of cards is shuffled,
the deck is divided in two halves (one half is akin to the first array and the other half is akin to the second
array). Next the two halves are interleaved back into a single deck (akin to the resulting third array).

We can use a loop to shuffle two arrays. If both arrays are exactly the same length, a shuffling function is
easy to implement using the accumulate pattern. Let’s first assume the arrays are exactly the same size,
because that makes things easier:

def shuffle(array1,array2):

array3 = []

for i in range(0,len(array1),1):

array3.append(array1[i])

array3.append(array2[i])

return array3

Note how we initialized the resulting array array3 to the empty array. Then, as we walked the first array,
we pulled elements from both arrays, adding them into the resulting array.

When we have walked past the end of array1 is empty, we know we have also walked past the end of array2,
since the two arrays have the same size.

If the incoming arrays do not have the same length, life gets more complicated:

def shuffle2(array1,array2):

array3 = []

if (len(array1) < len(array2)):

for i in range(0,len(array1),1):

array3.append(array1[i])

array3.append(array2[i])

return array3 + array2[i+1:]

else:

for i in range(0,len(array2),1):

array3.append(array1[i])

array3.append(array2[i])

return array3 + array1[i+1:]

Note the need to add the remaining elements in the longer array to the items that made it into array3.

We can also use a while loop that goes until one of the arrays is empty. This has the effect of removing the
redundant code in shuffle2:

def shuffle3(array1,array2):

array3 = []

i = 0

while (i < len(array1) and i < len(array2)):

array3.append(array1[i])

array3.append(array2[i])

i = i + 1

...
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When the loop ends, one or both of the arrays have been exhausted, but we don’t know which one or ones.
A simple solution is to add both remainders to array3 and return.

def shuffle3(array1,array2):

array3 = []

i = 0

while (i < len(array1) and i < len(array2)):

array3.append(array1[i])

array3.append(array2[i])

i = i + 1

return array3 + array1[i:] + array2[i:]

Suppose array1 is empty. Then the expression array1[i:] will generate the empty array. Adding the empty
array to array3 will have no effect, as desired. The same is true if array2 (or both array1 and array2 are
empty).

Looking back at shuffle2, we see that the code would be much simpler if we could guarantee that one array
was shorter than another. Suppose we write the code so that the assumption is that the first array is the
shorter. Our code becomes:

def shuffle4(array1,array2):

array3 = []

for i in range(0,len(array1),1):

array3.append(array1[i])

array3.append(array2[i])

return array3 + array2[i+1:]

But what happens when the second array is shorter? The code will fail (how?) unless we handle it. Here’s
one way to handle it:

def shuffle4(array1,array2):

if (len(array2) < len(array1)):

return shuffle4(array2,array1) # arrays are flipped

else:

array3 = []

for i in range(0,len(array1),1):

array3.append(array1[i])

array3.append(array2[i])

return array3 + array2[i+1:]

Note that we re-call shuffle4 with array2 as the first array if the length of array2 is less than the length of
array1. On this second call to shuffle4, we guarantee that the shorter array is the first array.

Although it may seem, at first, rather strange to call shuffle4 from within shuffle4, Computer Scientists do
this trick all the time. It’s called recursion and you will learn much more about recursion in a later chapter.

13.12 The merge pattern

With the shuffle pattern, we always took the head elements from both arrays at each step in the shuffling
process. Sometimes, we wish to place a constraint of the choice of elements. For example, suppose the two
arrays to be combined are sorted and we wish the resulting array to be sorted as well. The following example
shows that shuffling does not always work:
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>>> a = [1,4,6,7,8]

>>> b = [2,3,5,9]

>>> c = shuffle2(a,b)

[1, 2, 4, 3, 6, 5, 7, 9, 8]

The merge pattern is used to ensure the resulting array is sorted and is based upon the filtered-accumulate
pattern. The twist is we only accumulate an item if it is the smallest item in the two arrays that has not
already been accumulated. We start by keeping two index variables, one pointing to the smallest element in
array1 and one pointing to the smallest element in array2. Since the arrays are ordered, we know the that
the smallest elements are at the head of the arrays:

i = 0 # index variable for array1

j = 0 # index variable for array2

Now, we loop, similar to shuffle3:

while (i < len(array1) and j < len(array2)):

Inside the loop, we test to see if the smallest element in array1 is smaller than the smallest element in array2:

if (array1[i] < array2[j]):

If it is, we add the element from array1 to array3 and increase the index variable i for array1 since we have
“used up” the value at index i.

array3.append(array1[i])

i = i + 1

Otherwise, array2 must have the smaller element and we do likewise:

array3.append(array2[j])

j = j + 1

Finally, when the loop ends (i or j has gotten too large), we add the remainders of both arrays to array3
and return:

return array3 + array1[i:] + array2[j:]

In the case of merging, one of the arrays will be exhausted and the other will not. As with shuffle3, we really
don’t care which array was exhausted.

Putting it all together yields:

def merge(array1,array2):

array3 = []
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i = 0

j = 0

while (i < len(array1) and j < len(array2)):

if (array1[i] < array2[j]):

array3.append(array1[i])

i = i + 1

else:

array3.append(array2[j])

j = j + 1

return array3 + array1[i:] + array2[j:]

13.13 The fossilized pattern

Sometimes, a loop is so ill-specified that it never ends. This is known as an infinite loop. Of the two loops
we are investigating, the while loop is the most susceptible to infinite loop errors. One common mistake is
the fossilized pattern, in which the index variable never changes so that the loop condition never becomes
false:

i = 0

while (i < n):

print(i)

This loop keeps printing until you terminate the program with prejudice. The reason is that i never changes;
presumably a statement to increment i at the bottom of the loop body has been omitted.

13.14 The missed-condition pattern

With the missed condition pattern, the index variable is updated, but it is updated in such a way that the
loop condition never evaluates to false.

i = n

while (i > 0):

print(i)

i += 1

Here, the index variable i needs to be decremented rather than incremented. If i has an initial value greater
than zero, the increment pushes i further and further above zero. Thus, the loop condition never fails and
the loop becomes infinite.

13.15 Code

For Linux and Mac users, the code from this chapter can be found here

For Windows users, look here (you will need to save the file as loops.py).
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Chapter 14

More on Input

Now that we have learned how to loop, we can perform more sophisticated types of input.

14.1 Converting command line arguments en mass

Suppose all the command-line arguments are integers that need to be converted from their string versions
stored in sys.argv. We can use a loop and the accumulate pattern to accumulate the converted string
elements:

def convertArgsToNumbers():

result = []

# start at 1 to skip over program file name

for i in range(1,len(sys.argv),1):

num = int(sys.argv[i])

result.append(num)

return result

The accumulator, result, starts out as the empty array. For each element of sys.argv beyond the program
file name, we convert it and store the result in num. We then append that number to the growing array.

With a program file named convert.py as follows:

import sys

def main():

ints = convertArgsToNumbers()

print("original args are",sys.argv[1:])

print("converted args are",ints)

return 0

def convertArgsToNumbers():

...

main()

we get the following behavior:

$ python convert.py 1 34 -2
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original args are ['1', '34', '-2']

converted args are [1, 34, -2]

Note the absence of quotation marks in the converted array, signifying that the elements are indeed numbers.

14.2 Reading individual items from files

Instead of reading all of the file at once using the read function, we can read it one item at a time. When
we read an item at a time, we always follow this pattern:

open the file

read the first item

while the read was good

process the item

read the next item

close the file

In Python, we tell if the read was good by checking the value of the variable that points to the value read.
Usually, the empty string is used to indicate the read failed.

Processing files a line at a time

Here is another version of the copyFile function from Chapter ??. This version reads and writes one line at
a time. In addition, the function returns the number of lines processed:

def copyFile(inFile,outFile):

in = open(inFile,"r")

out = open(outFile,"w")

count = 0

line = in.readline()

while (line != ""):

out.write(line)

count += 1

line = in.readline()

in.close()

out.close()

return count

Notice we used the counting pattern, augmented by printing out the current line every time the count was
incremented.

Using a Scanner

A scanner is a reading subsystem that allows you to read whitespace-delimited tokens from a file. To get a
scanner for Python, issue this command:

wget troll.cs.ua.edu/cs150/book/scanner.py

To use a scanner, you will need to import it into your program:
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from scanner import *

Typically, a scanner is used with a loop. Suppose we wish to count the number of short tokens (a token is a
series of characters surrounded by empty space) in a file. Let’s assume a short token is one whose length is
less than or equal to some limit. Here is a loop that does that:

def countShortTokens(fileName):

s = Scanner(fileName) #create the scanner

count = 0

token = s.readtoken() #read the first token

while (token != ""): #check if the read was good

if (len(token) <= SHORT_LIMIT):

count += 1

token = s.readtoken() #read the next token

s.close() #always close the scanner when done

return count

Note that the use of the scanner follows the standard reading pattern: opening (creating the scanner), making
the first read, testing if the read was good, processing the item read (by counting it), reading the next item,
and finally closing the file (by closing the scanner) after the loop terminates. Using a scanner always means
performing the five steps as given in the comments. This code also incorporates the filtered-counting pattern,
as expected.

14.3 Reading Tokens into an Array

Note that the countShortTokens function is doing two things, reading the tokens and also counting the
number of short tokens. It is said that this function has two concerns, reading and counting. A fundamental
principle of Computer Science is separation of concerns. To separate the concerns, we have one function
read the tokens, storing them into an array (reading and storing is considered to be a single concern). We
then have another function count the tokens. Thus, we will have separated the two concerns into separate
functions, each with its own concern. Here is the reading (and storing) function, which implements the
accumulation pattern:

def readTokens(fileName):

s = Scanner(fileName) #create the scanner

items = []

token = s.readtoken() #read the first token

while (token != ""): #check if the read was good

items.append(token) #add the token to the items array

token = s.readtoken() #read the next token

s.close() #always close the scanner when done

return items

Next, we implement the filtered-counting function. Instead of passing the file name, as before, we pass the
array of tokens that were read:

def countShortTokens(items):

count = 0

for i in range(0,len(items),1)

if (len(items[i]) <= SHORT_LIMIT):
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count += 1

return count

Each function is now simpler than the original function. This makes it easier to fix any errors in a function
since you can concentrate on the single concern implemented by that function.

14.4 Reading Records into an Array

Often, data in a file is organized as records, where a record is just a collection of consecutive tokens. Each
token in a record is known as a field. Suppose every four tokens in a file comprises a record:

"Amber Smith" President 32 87000.05

"Thad Jones" Assistant 15 99000.42

"Ellen Thompson" Hacker 2 147000.99

Typically, we define a function to read one collection of tokens at a time. Here is a function that reads a
single record:

def readRecord(s): # we pass the scanner in

name = s.readstring()

if (name == ""):

return "" # no record, returning the empty string

name = name[1:-1] # strip the quotes from the name

title = s.readtoken()

years = s.readint()

salary = s.readfloat()

return [name,title,years,salary]

Note that we return either a record as an array or the empty string if no record was read. Since name is
a string, years of service is an integer, and salary is a real number, we read them appropriately with the
readstring, readinteger, and readfloat methods, respectively.

To total up all the salaries, for example, we can use an accumulation loop (assuming the salary data resides
in a file named salaries). We do so by repeatedly calling readrecord:

def totalPay(fileName):

s = Scanner(fileName)

total = 0

record = readRecord(s)

while (record != ""):

total += record[3]

record = readRecord(s)

s.close()

return total

Note that it is the job of the caller of readRecord to create the scanner, repeatedly send the scanner to
readRecord, and close the scanner when done. Also note that we tell if the read was good by checking to see
if readRecord return None.

The above function has two stylistic flaws. It uses those magic numbers we read about in Chapter ??. It is
not clear from the code that the field at index three is the salary. To make the code more readable, we can



14.4. READING RECORDS INTO AN ARRAY 85

set up some “constants” in the global scope (so that they will be visible everywhere): The second issue is
that that the function has two concerns (reading and accumulating). We will fix the magic number problem
first.

NAME = 0

TITLE = 1

SERVICE = 2

SALARY = 3

Our accumulation loop now becomes:

total = 0

record = readRecord(s)

while (record != ""):

total += record[SALARY]

record = readRecord(s)

We can also rewrite our readRecord function so that it only needs to know the number of fields:

def readRecord(s): # we pass the scanner in

name = s.readstring()

if (name == ""):

return "" # no record, returning None

name = name[1:-1] # strip the quotes from the name

title = s.readtoken()

years = s.readint()

salary = s.readfloat()

# create an empty record

result = [0,0,0,0]

# fill out the elements

result[NAME] = name

result[TITLE] = title

result[SERVICE] = service

result[SALARY] = salary

return result

Even if someone changes the constants to:

NAME = 3

TITLE = 2

SERVICE = 1

SALARY = 0

The code still works correctly. Now, however, the salary resides at index 0, but the accumulation loop is
still accumulating the salary due to its use of the constant to access the salary.
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14.5 Creating an Array of Records

We can separate the two concerns of the totalPay function by having one function read the records into an
array and having another total up the salaries. An array of records is known as a table. Creating the table
is just like accumulating the salary, but instead we accumulate the entire record into an array:

def readTable(fileName):

s = Scanner(fileName)

table = []

record = readRecord(s)

while (record != ""):

table.append(record)

record = readRecord(s)

s.close()

return table

Now the table holds all the records in the file. We must remember to enclose the record in square brackets
before we accumulate it into the growing table. The superior student will try this code without the brackets
and ascertain the difference.

The accumulation function is straightforward:

def totalPay(fileName):

table = readTable(fileName)

total = 0

for i in range(0,len(table),1):

record = table[i]

total += record[SALARY]

return total

We can simply this function by removing the temporary variable record:

def totalPay(fileName):

table = readTable(fileName)

total = 0

for i in range(0,len(table),1):

total += table[i][SALARY]

return total

Since a table is just an array, so we can walk it, accumulate items in each record (as we just did with salary),
filter it and so on.

14.6 Other Scanner Methods

A scanner object has other methods for reading. They are

readline() read a line from a file, like Python’s readline.

readchar() read the next non-whitespace character
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readrawchar() read the next character, whitespace or no

You can also use a scanner to read from the keyboard. Simply pass an empty string as the file name:

s = Scanner("")

Finally, you can scan tokens and such from a string by first creating a keyboard scanner, and then setting
the input to the string you wish to scan:

s = Scanner("")

s.fromstring(str)
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Chapter 15

Lists

Recall that what we are calling arrays are called lists by the Python community1. Now we will introduce true
lists; these lists will be our first attempt at building a data structure. A data structure is simply a bundling
of pieces of data together in a single entity along with a set of operations (implemented using functions) to
manipulate such entities. Common operations for data structures include putting data into the structure
and taking data out. Moreover, the data structure and the functions which implement the operations are
constructed so that the operations do not take an inordinate amount of time as more and more data is placed
into the structure.

15.1 The Node Data Structure

Our lists will use an intermediate data structure known as a node. A node is a simple structure that holds
two pieces of data. The first data item is some arbitrary value, while the second is another node. Graphically,
nodes are represented as a box with two arrows. The downward pointing arrow typically points to the value
while the rightward pointing arrow points to other node.

next

value

In actuality, the data items are the addresses in memory where the values and nodes reside; such memory
addresses are known as pointers. Thus, the graphical representation of the node is quite accurate, with the
arrows “pointing” to the data items. The downward arrow is known as the value pointer and the rightward
arrow is known as the next node pointer or simply next pointer.

All data structures are built upon other data structures, so there must be some low-level data structure that
is built into the language. Python has two such built-in structures, arrays and objects2. Objects would be a
good choice as a structure upon which to build nodes, but you don’t know about objects yet, so we will use
arrays instead. You will learn more about objects in a later chapter and in subsequent classes.

Each of our nodes will actually be an array of length two. The first slot in the array will hold the value
pointer and the second will hold the next pointer. Now that we have our structure, we will need to define a
set of operations for nodes. The first one we define is a function to create a node. Such a function is known
as a constructor:

1We can’t help if other folks are sloppy in their terminology.
2Python has other built-in data structures as well. But even if Python had no built-in structures, one can use functions

themselves as data structures!
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def NodeCreate(value,next): #this is the constructor

return [value,next]

Note that the constructor takes two arguments, the value and the next pointer and simply returns an array
holding those two values. Next, we define two operations for retrieving the data items stored in the node:

def NodeValue(n):

return n[0]

def NodeNext(n):

return n[1]

The node from which we wish to extract information is passed as an argument in calls to these two functions.
The definitions rely on the fact that the value is stored in the first slot and the next pointer is stored in the
second slot of the array that constitutes a node. Typically, functions that retrieve values or other information
from a data structure are known as accessors or getters.

Finally, we define operations for changing the data in a node:

def NodeSetValue(n,value):

n[0] = value

return

def NodeSetNext(n,next):

n[1] = next

return

Such functions are typically known as mutators or setters, since the change the data inside the structure.
Note that they implement the procedure pattern, as they do not compute any new values.

With these definitions in place, we can now make nodes and change their values. We will use the value None to
indicated that the next pointer of a node should not be followed. Such pointers-which-must-not-be-followed
are generically known as null pointers.

a = NodeCreate(3,None)

b = NodeCreate(4,None)

print("a's value is",NodeValue(a))

print("b's value is",NodeValue(b))

NodeSetValue(a,"two")

print("a's value now is",NodeValue(a))

Executing this code yields the following output:

a's value is 3

b's value is 4

a's value now is two

Continuing on from the previous bit of code, we can even join nodes together:
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NodeSetNext(a,b) # link!

print("b's value, through a is",NodeValue(NodeNext(a)))

print("a is",a)

The first statement sets the next pointer of a to b; in other words, the null pointer of node a was replaced
by a pointer to node b. Afterwards this statement, a and b are said to be linked together, as in a chain.

a None

3 4

b

Indeed, a group of nodes linked together via next pointers is known as a linked list. The next pointer of the
last node in a list of nodes is always null. The output of the first print statement conforms to expectation;
we see the value of the node a’s next pointer points to, namely b, is 4:

b's value, through a is 4

The output of the second print statement reveals that nodes are indeed arrays:

a is [2, [4, None]]

In fact, if we replace b’s next pointer, currently None, with a new node and then print a again:

NodeSetNext(b,NodeCreate(6,None))

print("a is",a)

we start to see why nodes can be used to form lists:

a is [2, [4, [6, None]]]

Note that the value 6 can only be reached through a or through b. There is no variable like a or b that points
directly to that node.

15.2 The Linked-List Data Structure

Now we could stop at this point and just use nodes and their operations to make true lists, but note that
the node operators freed us from knowing that nodes were based upon arrays. If you look closely at the
above code where we tested our node operations, you will see that there is absolutely no clue that nodes are
built from arrays. In fact, we only got an inkling of the internal structure of a node when we printed a node
directly using print, which is not a node operator. Likewise, we can build a list data structure based upon
nodes and be freed from both knowing lists are built from nodes and that nodes are built from arrays.

The first list operation we will define is the constructor:



92 CHAPTER 15. LISTS

def ListCreate(*args):

items = None

for i in range(len(args)-1,-1,-1): # work from right to left

items = join(args[i],items)

return items

This function has a bit of Python voodoo in it. The first bit is the asterisk before the single formal pa-
rameter, arg. This means that any number of arguments can be passed to ListCreate and all of them
will be bundled up into an array that is bound to the variable args. The second bit is the funny looking
range(len(args)-1,-1,-1), which produces the indices of all the elements in args in reverse order. This
causes the elements of args to be joined up in reverse. The reversal is necessary because the first value that
is joined ends up at the back of items3.

When ListCreate is called with no arguments, the constructor returns an empty list:

>>> ListCreate()

None

Thus an empty list is represented by None. If we pass a number of arguments, we see output similar to when
we joined a bunch of nodes together:

>>> ListCreate(2,"six",False)

[2, ['six', [False, None]]]

Therefore, ListCreate can take any number of values to populate a newly created list4.

The last bit of new stuff in the body of the ListCreate function is the reference to a join function:

def join(value,list):

return NodeCreate(value,list)

The join function takes a value and a list as arguments and returns a new node that glues the two arguments
together. The result is a list one item larger than the list that is passed in.

We can see from the definition of ListCreate that a list either has the value None, if there were no arguments,
or the result of join, if there were. Since join returns a node, then a list is actually a node (or None if the list
is empty). You may be wondering at this point why we bother to distinguish lists and nodes. One reason
is that lists in other programming languages aren’t quite so easy to implement as in Python and, in those
languages, nodes are quite distinct from lists. Thus, we want you to be ready for those languages. Another
reason is it is important to practice the concept of abstraction. Modern software systems exhibit a large
number of abstraction layers. With our lists, we can see three layers of abstractions: arrays, which abstract
some underlying machine code, nodes, which abstract arrays of length two, and lists, which abstracts a
chain of nodes. Each level of abstraction frees us from thinking about the details of the underlying layers.

Let us now look at the join operation more closely. Here is a rewrite that uses a temporary local variable,
n, to hold the new node that will join the given value and list together:

3If you are unclear about the need for reversing the arguments to ListCreate, you should instrument the loop by printing
out the value of items each time the loop executes. Then all will become clear.

4A function that can take a different number of arguments from call to call is called a variadic function.



15.2. THE LINKED-LIST DATA STRUCTURE 93

def join(value,list):

#before

n = NodeCreate(value,None)

#during

NodeSetNext(n,list)

#after

return n

First, let us create a list to which we will join a value:

a = ListCreate(42)

Graphically, the situation looks like this:

a None

42

Now, we call join to join the value of 13 to the list a.

a = join(13,a)

At the point of the #before comment in join, the formal parameters value and list have been set to 13 and
a, respectively. The situation looks like this:

a None

42

list

value 13

The variables list and value, since they are local to the function join, are shown in blue5. After the step
n = NodeCreate(value,None), marked with the comment #during, a new node with the given value is
created and bound to the variable n. The situation changes to:

a None

42

list

n None

13value

5When two variables, in this case a and list, point to the same thing, they are said to be aliases of one another.
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The next step sets the next pointer of n to point to the given list, via the statement NodeSetNext(n,list):

a None

42

list

n

13value

Finally, the value of n is returned and a is assigned this new value:

a None

42

list

n

13value

From the drawing, we can see that list a now includes the value 13 at the front of the list, as intended. Of
course, at this point the variables local to join, shown in blue, are no longer in scope.

Adding values to the front of a list is known as prepending, so join6 prepends a value to a list. Instead of
adding new values to the front, we can also add values to the back of the list. Such a procedure is termed
appending, but we will restrict appending to lists proper. In other words, we will only append a list to an
existing list:

def append(listA,listB): #listA length must be > 0

node = listA

while (NodeNext(node) != None):

node = NodeNext(node)

NodeSetNext(node,listB)

return

Here, we set the variable node to the beginning of listA. Then, as long as node’s next pointer points to a
node and not None7, we set node to the next node in the list. We repeat this process until we reach the last
node in the list, whose next pointer does indeed point to None. At this point, we drop out of the loop and
set the next pointer of this last node to listB8. Generally, you can quickly tell if a function is destructive or
non-destructive by looking at the return value. If the function implements the procedure pattern, it is likely
destructive. If it implements the function pattern, it is likely non-destructive9.

Here is an example:

6Prepend is rather an awkward term, so we will use join as the function name, rather than prepend.
7The test condition of the while loop is the reason for the comment that the length of listA must be greater than zero.
8Note that while NodeValue and NodeNext are non-destructive operations, append is a destructive operation, since a pointer

in the list is actually changed.
9Sometimes, destructive functions return a value for convenience to the caller, in which case this generalization fails.
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>>> a = ListCreate(2,4,6)

>>> b = ListCreate(1,3,5)

>>> append(a,b)

[2, [4, [6, [1, [3, [5, None]]]]]]

>>> NodeNext(a)

[4, [6, [1, [3, [5, None]]]]]

If we wish to append a single value to a list, we must turn the single value into a list first:

>>> a = ListCreate(2,4,6)

>>> append(a,ListCreate(8))

[2, [4, [6, [8, None]]]]

The process of moving from one node to the next in a list is known as walking the list. Obviously, the longer
the list, the longer it takes to walk it. Thus, appending to a list can take much longer than prepending to
the same list, since prepending takes the same amount of time regardless of how long the list is. However,
as you will learn in your data structures class, there is a much faster way to append to a list. If you cannot
wait to find out this clever implementation of append, search for the phrase ”linked list tail pointer” on the
interwebs.

Once we are able to insert values into a list, we now need functions to look at the values in the list. Two
common operations of a list are head, which retrieves the first item in the list, and tail, which returns a the
list made up of the all the nodes in the original list except the first node:

def head(items):

return NodeValue(items)

def tail(items):

return NodeNext(items)

As you can see, these functions are wrappers to the underlying node functions, but are used frequently
because they are smaller names with generally universally understood semantics. Often, wrappers to the
functions that change node values and pointers are defined as well:

def setHead(items,value):

NodeSetValue(items,value)

return

def setTail(items,next):

NodeSetNext(items,next)

return

Here is an example:

>>> a = ListCreate(1,8,7,2)
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>>> a

[1, [8, [7, [2, None]]]]

>>> head(a)

1

>>> tail(a)

[8, [7, [2, None]]]

>>> head(a)

1

>>> head(tail(a))

8

>>> setHead(tail(a),0)

>>> a

[1, [0, [7, [2, None]]]]

Note that taking the tail of a list does not alter the original list in any way10.

Finally, the last two operations we will discuss retrieve and set the values of nodes anywhere in the list. To
specify which node is of interest, the caller of these functions will supply an index. This index will function
exactly like the zero-based index of arrays; index zero will refer to the first value, index one will refer to the
second value, and so on. The function ListIndex gets a value at the given index and ListSetIndex replaces
the old value at the given index with the given value. Both of these functions will use a helper function
named ListIndexNode, which will return the node at a given index11:

def ListIndexNode(items,index):

node = items

for i in range(0,index,1):

node = tail(node)

return node

def ListIndex(items,index):

node = ListIndexNode(items,index)

return head(node)

def ListSetIndex(items,index,value):

node = ListIndexNode(items,index)

NodeSetValue(node,value)

return

Note that the ListIndexNode function walks the list for ListIndex and ListSetIndex. Note further that this
implementation does no error checking. What happens if the index is greater than or equal to the number
of nodes in the list?

Rather than have you type all this code in, the above node and list operations are bundled into a single
module, named List.py. You can get the module with this command:

wget troll.cs.ua.edu/cs150/book/List.py

on Linux and this command:
10Again, when an operation does not affect its operands, it is said to be non-destructive. So, like the functions they wrap,

head and tail are both non-destructive
11This is one of the reasons objects would make a better base structure than arrays for nodes and lists. Ideally, nobody

should call ListIndexNode except ListIndex and ListSetIndex. If objects are used, ListIndexNode can be made private, so that
only other list functions can call it.
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curl -O troll.cs.ua.edu/cs150/book/List.py

on a Mac. For Windows, browse to:

http://troll.cs.ua.edu/cs150/book/ms/List.py

and save the page.

These versions of List.py generates better error messages for ListIndex and ListSetIndex.

15.3 More on Walking lists

This idea of walking lists is an extremely important concept; so important that we will review the two
“walks” that are commonly needed when manipulating lists. The first is walking to a certain location in list.
Usually, one walks to index (covered previously) or to a value. Of course, walking to a value is simply the
search pattern, implemented for lists. Here is a search function that works on lists:

def find(value,items):

spot = items;

while (spot != None and head(spot) != value):

spot = tail(spot)

return spot

Note that this version returns the node containing the value if the value is found and None otherwise. Because
of the possibility that a value may not be in the list, we must add the condition spot != None to the while
loop test. If we didn’t, then spot would eventually reach None and the head operation on None would generate
an error. Sometimes, find would be written with a simpler loop test, but complicated by a return from the
body of the loop:

def find(value,items):

spot = items;

while (spot != None):

if (head(spot) == value): return spot

spot = tail(spot)

return None

These two implementations are semantically equivalent; the former is usually preferred stylistically, but the
latter is likely more common.

The second walk one is likely to encounter is a walk to the next-to-the-last node in a list, which is useful in
many situations: removing the last item, adding a value to the end of a list quickly (again, search for “linked
list tail pointer” for details), and so on.

One must walk the list to get to the penultimate node. Here is one attempt; it keeps two pointers when
walking the list, a leading pointer and a trailing pointer that stays one node behind the leader. The walk
ends when the next pointer of the leading node becomes null. We call this pattern the trailing value pattern:

def getPenultimateNode(items):

trailing = None;
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leading = items;

while (tail(leading) != None): #when to stop walking

trailing = leading

leading = tail(leading)

return trailing

If we walked until the lead node became null, then the trailing node would be the last node in the list, not
the next-to-the-last node. However, checking the next pointer of a node is a dangerous proposition. What
happens in the case of an empty list? How many nodes must be in a list for this function to work properly?

The above approach can be simplified by checking if the trailing pointer’s next pointer points to a node
whose next pointer is null. Although the check is a bit more complicated, it obviates the need for the leading
node:

def getPenultimateNode(items):

trailing = items;

while (tail(tail(trailing)) != None):

trailing = tail(trailing)

return trailing

The two versions of getPenultimateNode are similar, but not exactly equivalent. How many nodes must be
in a list for the second version to work properly?

15.4 A Walking Application

An application of the trailing value pattern is to insert a value into an ordered list so that the list remains
ordered12. For example, if the ordered list is:

[1,[3,[8,[13,[14,[17,None]]]]]]

^ ^

and we wish to insert 10 into the list, we must place the 10 between the 8 and the 13 so that the list values
remain in increasing order (from left to right). The ^ marks show where the trailing and leading pointers
should end up when the walk is finished. If the 10 is inserted between the trailing and leading pointers, we
end up with:

[1,[3,[8,[10,[13,[14,[17,None]]]]]]]

as desired. Using getPenultimateNode as a starting point, we have:

def insertInOrder(value,items):

trailing = None;

leading = items;

while (...): #when to stop walking

trailing = leading

leading = tail(leading)

12This idea of repeatedly inserting items in a list with the list remaining ordered is the basis for an important data structure,
the priority queue. Priority queues are used in network connectivity algorithms and discrete-event simulations. You will learn
about priority queues in a subsequent class
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# insert new value in between trailing and leading

...

return "done"

The ellipses mark where changes to the trailing value pattern need to be made. The first ellipsis (the while
test) should force the walk to stop when the correct insertion point is found. Clearly, that is when leading
value is greater than the value to be inserted. The second ellipsis concerns how the actual insertion is to be
performed. We know we will need to:

• create a new node containing the new value

• point the new node’s next pointer to the leading node

• point the trailing node’s next pointer to the new node

All that’s left then is to fill in the blanks. Here is the result:

def insertInOrder(value,items):

trailing = None;

leading = items;

while (head(leading) < value): #when to stop walking

trailing = leading

leading = tail(leading)

# insert new value in between trailing and leading

n = NodeCreate(value,None)

NodeSetNext(n,leading)

NodeSetNext(trailing,n)

return "done"

Note that we wanted to stop when the leading value is greater than the value to be inserted. Since we are
working with a while loop, we need to reverse the logic so that the walk continues as long as the leading
value is less than the new value13.

Testing our code with the above example yields:

>>> a = ListCreate(1,3,8,13,14,17)

>>> insertInOrder(10,a)

>>> a

[1,[3,[8,[10,[13,[14,[17,None]]]]]]]

It appears our code works correctly! Very exciting! Unfortunately, the excitement of getting code to work
seduces both novice and experienced Computer Scientists alike into thinking the task is finished. Many
times, including this case in particular, initial success only means the basic idea is correct, not that the code
is correct, for all possible inputs. Indeed, for our implementation of insertInOrder, there are edge cases for
which this code fails. An edge case is a set of inputs that force the code to do as much (or as little) work
as possible. For insertInOrder, what inputs causes the function to do as much work as possible? The only
place where a variable amount of work is performed is the loop that walks the list. In order to make the
loop go as many times as possible, it is clear that we would need to insert a value at the very end of the list.
Doing so yields:

13Actually, reversing the logic of greater than yields less than or equal, but we are ignoring situations when values match
exactly. What happens in those cases is left as an exercise.
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>>> a = ListCreate(1,3,8,13,14,17)

>>> insertInOrder(20,a)

Traceback (most recent call last):

File "test.py", line 15, in <module>

print("inserting 18:",insertInOrder(20,a))

File "test.py", line 6, in insertInOrder

while (head(leading) < value): #when to stop walking

File "/home/lusth/l1/book/List.py", line 34, in head

return NodeValue(items)

File "/home/lusth/l1/book/List.py", line 12, in NodeValue

def NodeValue(n): return n[0]

TypeError: 'NoneType' object is not subscriptable

Likewise, making the loop do as little work as possible yields errors in the code. What inputs would cause
the loop run very little or not at all? Obviously, if the value to be inserted is smaller than any value in the
list, the loop does not need to be run. Less obviously, what if the given list is empty? Fixing insertInOrder
to handle these edge cases is left as an exercise.

15.5 Processing Lists versus Arrays

Lists can be processed with loops, much like arrays. In fact, there is a direct translation from an array loop
to a list loop. Suppose you have the following array loop:

for i in range(0,len(items),1): # items is an array

# loop body here

...

The corresponding list loop would be:

spot = items # items is an list

while (spot != None):

# loop body here

...

spot = tail(spot)

In addition, the empty array [] is replaced by the empty list None and the array reference items[i] is
replaced by head(items). Finally, references to the append method of arrays is replaced by calls to the join
function. For example:

results.append(items[i])

is replaced by:

result = join(head(spot),results)

Let’s look a some example translations. The counting pattern is very important for lists, since there is no
built-in function like len for determining the length of a list. The array version of this pattern is:
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count = 0

for i in range(0,len(items),1):

count += 1

Translating the code to work with arrays using the above substitutions yields:

count = 0

spot = items #typical list walking initialization

while (spot != None): #typical list walking condition

count += 1

spot = tail(spot) #typical list walking update

As with arrays, each “step” taken results in a counter being incremented. For another example, let’s look
at a filtered accumulation. First, the array pattern:

def sumEvens(items):

total = 0

for i in range(0,len(items),1):

if (items[i] % 2 == 0):

total += items[i]

return total

Now the list translation:

def sumEvens(items):

total = 0

spot = items

while (spot != None):

if (head(spot) % 2 == 0):

total += head(spot)

spot = tail(spot)

return total

Finally, let’s look at the extreme index pattern, since it adds a slight wrinkle. Here is the array version:

ilargest = 0

for i in range(1,len(items),1):

if (items[i] > items[ilargest]):

ilargest = i

Note that we have no instructions for translating items[ilargest]. We can, however, save both the largest
value seen so far as well as the current index:

index = 0

spot = items

largest = head(spot)

ilargest = 0

while (spot != None):
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if (head(spot) > largest):

ilargest = index

largest = head(spot)

index += 1

spot = tail(spot)

In general, any processing that requires finding an index will be more complicated with a list.

15.5.1 The filter and map patterns

Filtering and mapping lists with loops is problematic, since using join instead of append ends up reversing
the elements in the resulting list. This is because join puts an element at the beginning and thus the last
element joined ends up at the front of the list and the next-to-the-last element ends up in the second position,
and so on. Still, if the order of the result doesn’t matter, then lists and loops go well together for this kind
of processing. Here is an array loop that filters out the odd elements, leaving the even ones in the result:

def extractEvens(items):

evens = []

for i in range(0,len(items),1):

if (isEven(items[i])):

evens.append(items[i])

return evens

Translating this to list notation yields:

def extractEvens(items):

evens = None

spot = items

while (spot != None):

if (isEven(head(spot))):

evens = join(head(spot),evens)

spot = tail(spot)

return evens

Because of the reversal:

extractEvens(ListCreate(2,6,5,3,9,8,4))

returns:

[4,[8,[6,[2,None]]]]

15.5.2 The shuffle and merge patterns

As with arrays, shuffling and merging lists using loops is rather complicated. So much so that we will not
even bother discussing loop-with-list versions. However, using recursion with lists greatly simplifies this type
of processing, as we shall see in the next chapter.
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15.5.3 The fossilized pattern

The primary reason for accidentally implementing the fossilized pattern is to forget the while loop update.
For example, while:

spot = items

while (spot != None):

# loop body here

...

spot = tail(spot)

may have been intended, what gets coded is:

spot = items

while (spot != None):

# loop body here

...

Since spot is never updated, it never becomes None (unless, of course, it was None to begin with). This
leads to an infinite loop.

15.5.4 The wrong-spot pattern

The wrong-spot pattern is another common error. Here instead of referring to spot, one mistakenly refers to
items instead. An example is this attempt at finding the smallest value in a list:

smallest = head(items)

spot = items

while (spot != None):

if (head(spot) < smallest):

smallest = head(items) # ERROR: should use spot here

spot = tail(spot)

This loop never sets smallest to anything except the first value in items.

15.6 Why Lists?

You may be asking, why go through all this trouble to implement lists when arrays seem to do every thing
lists can do. The reason comes down to the fact that no data structure does all things well. For example, a
data structure may be very fast when putting values in, but very slow in taking values out. Another kind
of data structure may be very slow putting values in but very fast taking values out. This is why there are
quite a number of different data structures, each with their own strengths.

In the case of lists and arrays, adding an item to a list can be much quicker than adding an item to an array.
Consider four scenarios:

1. prepending a value to a list containing one item

2. prepending a value to a list containing one million items
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3. prepending a value to an array containing one item

4. prepending a value to an array containing one million items

Scenarios 1, 2, and 3 all take about the same amount of time, whereas scenario 4 takes about a million times
longer than the other scenarios. This is because when a value is joined to an array, a new array is created
and all the elements in the original array are copied into the new array. If the old array has one value, then
one value is copied. If the old array has a million values, then a million values are copied.

Another reason is that, in other programming languages besides Python, arrays have a fixed size and you
cannot put more values in the array than there is room. A list, on the other hand, can grow without bound,
subject to the memory available to the program. That said, sometimes arrays are the better data structure
to use. Therefore, the List module contains two functions for converting between arrays and lists:

ArrayToList(items) # where items is an array; a list is returned

ListToArray(items) # where items is a list; an array is returned

Use these functions when the data is in one form, but you need it in another.

We will use lists heavily in the next chapter on recursion.

15.7 Problems

1. Assume a list holds the values 3, 8 and 10. Draw a box and pointer diagram of this list.

2. Suppose the loop in ListCreate is replaced with:

for i in args: #an alternate loop

items = join(i,items)

Explain what happens and why when more than one argument is passed to ListCreate.

3. Assume a list holds the values 3 and 8. Consider appending the value 5. Draw a set of box and pointer
diagrams, similar to those used in the discussion of join, that illustrate the action of append. You
should have a drawing of the situation before the while loop begins, one for each update of the variable
node while the loop is running, one after the new node is created, and one showing the list just before
the function returns. Label your drawings appropriately.

4. Define a function named appendValue, which takes a list and a value and appends the value to the list.
It should do so by setting the next pointer of the last node in the first list to a new node containing
the given value. Your function should look very similar to append.

5. The module List.py exhibits an important principle in Computer Science, abstraction. The list opera-
tions treat nodes as abstract objects; that is to say, lists do not know nor care about how nodes are
constructed. Verify this is true by modifying the node operations so that value pointer is stored in the
second slot of the underlying two-element array and the next pointer is stored in the first slot. Now
test the list operations to see that they work exactly as before.

6. The list operation ListIndexNode exhibits another important concept in Computer Science, generaliza-
tion. Since both ListIndex and ListSetIndex need to walk the list, that list-waking code was generalized
into the function ListIndexNode. Modify the List.py module so that ListIndex and ListSetIndex each
incorporate the code of ListNodeIndex. Then comment out ListIndexNode. Both operations should
function as before, but you should notice how similar they look. When you see such similarity, the
similar code is a candidate for generalization.
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7. Define a function named length, which takes a list as an argument and returns the number of items in
the list.

8. Define a function named reverse, which takes a list as an argument and returns a new list with the same
items as the given list, but in the opposite order. For example (reverse (ListCreate 1 2 3 4))

should return the list [4, [3, [2, [1, None]]]].

9. Define a function named chop, which takes a list as an argument and destructively removes the last
element of a list. Your function should look similar to getPenultimateNode.

10. Define a function named equals, which takes two lists as arguments and returns whether or not the two
lists have the same elements in the same order.

11. The linked lists developed in this chapter are known as singly-linked lists, a class of lists with a single
pointer links a node to the next node in the list. Another class of lists, doubly-linked lists, provide
an additional pointer from a node to its predecessor. Define a constructor for nodes upon which
doubly-linked lists could be based.

12. Fix the given version of insertInOrder so that it correctly handles edge cases.

13. Consider the version of insertInOrder given in this chapter. If a value to be inserted matches a value
already in the list, does the new value end up before or after the old value? How would you change
the code to get the opposite behavior?

15.8 Code

For Linux and Mac users, the code from this chapter can be found here.

For Windows users, look here (you will need to save the file as lists.py).
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Chapter 16

Recursion

In Chapter ??, we learned about if statements. When we combine if statements with functions that call
themselves, we obtain a powerful programming paradigm called recursion.

Recursion is a form of looping; when we loop, we evaluate code over and over again. We use a conditional
to decide whether to continue the loop or to stop. Recursive loops are often easier to write and understand,
as compared to the iterative loops such as whiles and fors, which you learned about in a previous chapter.
In some programming languages, iterative loops are preferred as they use much less computer memory and
are slightly faster as compared to recursive loops. In other languages, this is not the case at all. In general,
there is no reason to prefer iterative loops over recursive ones, other than this memory issue and slight loss
of performance. Any iterative loop can be written as a recursion and any recursion can be written as an
iterative loop. Use a recursion if that makes the implementation more clear, otherwise, use an iterative loop.

Many mathematical functions are easy to implement recursively, so we will start there. Recall that the
factorial of a number n is:

n! = n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ 2 ∗ 1 (16.1)

Consider writing a function which computes the factorial of a positive integer. For example, if the function
were passed the value of 4, it should return the value of 24 since 4! is 4*3*2*1 or 24. To apply recursion to
solve this problem or any problem, for that matter, it must be possible to state the solution of a problem so
that it references a simpler version of the problem. For factorial, the factorial of a number can be stated in
terms of a simpler factorial. Consider the two equations below:

0! = 1 (16.2)

n! = n ∗ (n− 1)! otherwise (16.3)

Equation ?? says that the factorial of zero is one1. Equation ?? states that the factorial of any other
(positive) number is obtained by multiplying the number by the factorial of one less than that number.
Together, these two equations form a recurrence equation that describes the computation of factorial.

After some study, you should be able to see that this new way of describing factorial is equivalent to Equation
??, the one that that used ellipses2. Equation ?? gets the basic idea of factorial across but is not very precise.
For example, how would you compute the factorial of three using Equation ???

1Mathematicians, being an inclusive bunch, like to invite zero to the factorial party.
2Ellipses are the three dots in a row and are stand-ins for stuff that has been omitted.

107
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The second form with the two equations is particularly well suited for implementation as a function in a
computer program:

def factorial(n):

if (n == 0):

return 1

else:

return n * factorial(n - 1)

Note how the factorial function precisely implements the recurrence equation. Convince yourself that the
function really works by tracing the function call:

factorial(3)

Decomposing the call, we find that:

factorial(3) is 3 * factorial(2)

since n, having a value of 3, is not equal to 0. Thus the second block of the if is evaluated and we can replace
n with 3 and n-1 with 2. Likewise, we can replace factorial(2) by 2 * factorial(1), yielding:

factorial(3) is 3 * 2 * factorial(1)

since n, now having a value of 2, is still not zero. Continuing along this vein, we can replace factorial(1)

by 1 * factorial(0), yielding:

factorial(3) is 3 * 2 * 1 * factorial(0)

Now in this last call to factorial, n does have a value of zero, so we can replace factorial(0) with its
immediate return value of one:

factorial(3) is 3 * 2 * 1 * 1

Thus, factorial(3) has a value of six:

>>> factorial(3)

6

as expected.

In contrast, here is a function which computes factorial using a for loop:

def factorial(n):

total = 1;

for i in range(1,n+1):

total = total * i

return total
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We can see from this version that factorial is an accumulation. This version also more closely follows
Equation ??. Note that we have to extend the upper end of the range by one in order to get n included in
the accumulation, since the upper limit of the range function is exclusive.

16.1 The parts of a recursive function

Recursive approaches rely on the fact that it is usually simpler to solve a smaller problem than a larger
one. In the factorial problem, trying to find the factorial of n − 1 is a little bit simpler3 than finding the
factorial of n. If finding the factorial of n− 1 is still too hard to solve easily, then find the factorial of n− 2
and so on until we find a case where the solution is dead easy. With regards to factorial, this is when n is
equal to zero. The easy-to-solve code (and the values that get you there) is known as the base case. The
find-the-solution-using-a-simpler-problem code (and the values that get you there) is known as the recursive
case. The recursive case usually contains a call to the very function being executed. This call is known as a
recursive call.

Most well-formed recursive functions are composed of at least one base case and at least one recursive case.

16.2 The greatest common divisor

Consider finding the greatest common divisor, the gcd, of two numbers. For example, the gcd of 30 and 70 is
10, since 10 is the largest number that divides both 30 and 70 evenly. The ancient Greek philosopher Euclid
devised a solution for this problem that involves repeated division. The first division divides the two numbers
in question, saving the remainder. Now the divisor becomes the dividend and the remainder becomes the
divisor. This process is repeated until the remainder becomes zero. At that point, the current divisor is the
gcd. We can specify this as a recurrence equation, with this last bit about the remainder becoming zero as
our base case:

gcd(a,b) is b if a divided by b has a remainder of zero
gcd(a,b) is gcd(b,a % b) otherwise

In this recurrence equation, a and b are the dividend and the divisor, respectively. Recall that the modulus
operator % returns the remainder. Using the recurrence equation as a guide, we can easily implement a
function for computing the gcd of two numbers.

def gcd(dividend,divisor):

if (dividend % divisor == 0):

return divisor

else:

return gcd(divisor,dividend % divisor)

Note that in our implementation of gcd, we used more descriptive variables than a and b. We can improve
this function further, by noting that the remainder is computed twice, once for the base case and once again
to make the recursive call. Rather than compute it twice, we compute it straight off and save it in an aptly
named variable:

def gcd(dividend,divisor):

remainder = dividend % divisor

if (remainder == 0):

3If one views more multiplications as more complex, then, clearly, computing the factorial of n−1 is simpler than computing
the factorial of n.
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return divisor

else:

return gcd(divisor,remainder)

Look at how the recursive version turns the divisor into the dividend by passing divisor as the first argument
in the recursive call. By the same token, remainder becomes divisor by nature of being the second argument
in the recursive call. To convince one’s self that the routine really works, one can modify gcd to “visualize”
the arguments. On simple way of visualizing the action of a function is to add a print statement:

def gcd(dividend,divisor):

remainder = dividend % divisor

print("gcd:",dividend,divisor,remainder)

if (remainder == 0):

return divisor

else:

return gcd(divisor,remainder)

After doing so, we get the following output:

>>> gcd(66,42)

gcd: 66 42 24

gcd: 42 24 18

gcd: 24 18 6

gcd: 18 6 0

6

Note, how the first remainder, 24, keeps shifting to the left. In the first recursive call, the remainder becomes
divisor, so the 24 shifts one spot to the left. On the second recursive call, the current divisor, which is 24,
becomes the dividend, so the 24 shifts once again to the left.

We can also write a iterative version of gcd:

def gcd(dividend,divisor):

while (divisor != 0):

print(divisor,dividend)

temp = dividend % divisor

dividend = divisor

divisor = temp

return dividend

While the iterative version of factorial was only slightly more complicated than the recursive version, with
gcd, we start to see more of an advantage using the recursive formulation. For instance, where did the temp
variable come from and why is it necessary4?

16.3 The Fibonacci sequence

A third example of recursion is the computation of the nth Fibonacci number. The Fibonacci series looks
like this:

4We’ll see why the variable temp is needed in the next chapter.
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n : 0 1 2 3 4 5 6 7 8 ...

Fibonacci(n) : 0 1 1 2 3 5 8 13 21 ...

and is found in nature again and again5. From this table, we can see that the 7th Fibonacci number is 13. In
general, a Fibonacci number is equal to the sum of the previous two Fibonacci numbers. The exceptions are
the zeroth and the first Fibonacci numbers which are equal to 0 and 1 respectively. Voila! The recurrence
case and the two base cases have jumped right out at us! Here, then, is a recurrence equation which describes
the computation of the nth Fibonacci number.

fib(n) is 0 if n is zero
fib(n) is 1 if n is one
fib(n) is fib(n - 1) + fib(n - 2) otherwise

Again, it is straightforward to convert the recurrence equation into a working function:

# compute the nth Fibonacci number

# n must be non-negative!

def fibonacci(n):

if (n == 0):

return 0

elif (n == 1):

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

Our implementation is straightforward and elegant. Unfortunately, it’s horribly inefficient in Python. Unlike
our recursive version of factorial which recurred about as many times as the size of the number sent to the
function, our recursive version of Fibonacci will recur many, many more times than the size of its input.
Here’s why.

Consider the call to fib(6). Tracing all the recursive calls to fib, we get:

fib(6) is fib(5) + fib(4)

Replacing fib(5) with fib(4) + fib(3), we get:

fib(6) is fib(4) + fib(3) + fib(4)

We can already see a problem, we will compute fib(4) twice, once from the original call to fib(6) and
again when we try to find fib(5). If we write down all the recursive calls generated by fib(6) with each
recursive call indented from the previous, we get a structure that looks like this:

fib(6)

fib(5)

fib(4)

5A pineapple, the golden ratio, a chambered nautilus, etc.
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fib(3)

fib(2)

fib(1)

fib(0)

fib(1)

fib(2)

fib(1)

fib(0)

fib(3)

fib(2)

fib(1)

fib(0)

fib(1)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

fib(1)

fib(2)

fib(1)

fib(0)

We would expect, based on how the Fibonacci sequence is generated, to take about six “steps” to calculate
fib(6). Instead, ultimately there were 13 calls6 to either fib(1) or fib(0). There was a tremendous
amount of duplicated and, therefore, wasted effort. An important part of Computer Science is how to reduce
the wasted effort. One way to keep the recursive nature without the penalty of redundant computations is
to cache previously computed values. Another way is to use an iterative loop:

def fib(n):

previous = 0

current = 1

for i in range(0,n,1):

temp = previous

previous = current

current = previous + temp

return previous

Here, the recursive version, for all its faults, is much, much easier to understand. Complications of the
iterative version include, why is previous returned and not current? And where did the variable temp come
from? In the Chapter ??, we will see a way to combine the clarity of recursion with the efficieny of loops.

16.4 Manipulating arrays and lists with recursion

Recursion, arrays, and lists go hand-in-hand. What follows are a number of recursive patterns involving
arrays and lists that you should be able to recognize and implement.

For the following discussion, assume the ahead function returns the first item of the given array, while the
atail function returns an array composed of all the items in the given array except for the first element. If
the array is empty, it will have a value of [].

613 is 7th Fibonacci number and seven is one more than six. A coincidence? Maybe...or maybe not!
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By the way, the ahead and atail functions are easily implemented in Python:

def ahead(items): return items[0]

def atail(items): return items[1:] #slicing, which copies!

Note that the ahead and atail functions are analogous to the ListHead and ListTail functions of the previous
chapter on lists. Note also that we will use the term collection to stand in for either a list or an array.

16.5 The counting pattern

The counting pattern is used to count the number of items in a collection. If the collection is empty, then
its count of items is zero. The following function counts and ultimately returns the number of items in an
array:

def count(items):

if (items == []): # base case

return 0

else:

return 1 + count(atail(items))

The functions works on the observation that if you count the number of items in the tail of a array, then the
number of items in the entire array is one plus that number. The extra one accounts for the head item that
was not counted when the tail was counted.

The list version is similar:

def count(items):

if (items == None): # base case

return 0

else:

return 1 + count(tail(items))

The only code difference in the list version are the use of None instead of [] to signify empty and tail instead
of atail. However, the performance difference between the two versions can be huge! For a list or an array
with n items, the list version will run n times faster. So if your collection holds a million items, the array
version will work on the order of one million times slower. This is due to how atail works versus how tail
works, as discussed in the previous chapter. For small numbers of items, however, the array version will run
quickly enough.

16.6 The accumulate pattern

The accumulate pattern is used to combine all the values in a collection. The following function performs a
summation of the list values:

def sum(items):

if (items == None): #base case

return 0

else:

return head(items) + sum(tail(items))
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Note that the only difference between the count function and the sum function is the recursive case adds in
the value of the head item, rather than just counting the head item. That the functions count and sum look
similar is no coincidence. In fact, most recursive functions, especially those working on collections, look very
similar to one another.

16.7 The filtered-count and filtered-accumulate patterns

A variation on the counting and accumulate patterns involves filtering. When filtering, we use an additional
if statement to decide whether or not we should count the item, or in the case of accumulating, whether or
not the item ends up in the accumulation.

Suppose we wish to count the number of even items in a list:

def countEvens(items):

if (items == None): #base case

return 0

elif (head(items) % 2 == 0):

return 1 + countEvens(tail(items))

else:

return 0 + countEvens(tail(items))

The base case states that there are zero even numbers in an empty list. The first recursive case simply counts
the head item if it is even and so adds 1 to the count of even items in the remainder of the list. The second
recursive case does not count the head item (because it is not even) and so adds in a 0 to the count of the
remaining items. Of course, the last return would almost always be written as:

return countEvens(tail(items))

As another example of filtered counting, we can pass in a value and count how many times that value occurs:

def occurrences(target,items):

if (items == None):

return 0

elif (head(items) == target):

return 1 + occurrences(target,tail(items))

else:

return occurrences(target,tail(items))

An example of a filtered-accumulation would be to sum the even-numbered integers in a list:

def sumEvens(items):

if (items == None):

return 0

elif (isEven(head(items))):

return head(items) + sumEvens(tail(items))

else:

return sumEvens(tail(items))

where the isEven function is defined as:
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def isEven(x):

return x % 2 == 0

16.8 The filter pattern

A special case of a filtered-accumulation is called filter. Instead of summing the filtered items (for example),
we collect the filtered items into a collection. The new collection is said to be a reduction of the original
collection.

Suppose we wish to extract the even numbers from a list. The structure of the code looks very much like
the sumEvens function in the previous section, but instead of adding in the desired item, we join the item
to the reduction of the tail of the array:

def extractEvens(items):

if (items == None):

return None

elif (isEven(head(items))):

return join(head(items),extractEvens(tail(items)))

else:

return extractEvens(tail(items))

Given a list of integers, extractEvens returns a (possibly empty) list of the even numbers:

>>> a = ListCreate(4,2,5,2,7,0,8,3,7)

>>> extractEvens(a)

[4, [2, [2, [0, [8, None]]]]]

>>> b = ListCreate(1,3,5,7,9)

>>> extractEvens(b)

[]

We see again that our list representation depends on arrays.

16.9 The map pattern

Mapping is a task closely coupled with that of reduction, but rather than collecting certain items, as with
the filter pattern, we collect all the items. As we collect, however, we transform each item as we collect it.
The basic pattern looks like this:

def map(f,items):

if (items == None):

return None

else:

return join(f(head(items)),map(f,tail(items)))

Here, function f is used to transform each item in the recursive step.

Suppose we wish to subtract one from each element in an array. First we need a transforming function that
reduces its argument by one:
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def decrement(x): return x - 1

Now we can “map” the decrement function over an array of numbers:

>>> a = ListCreate(4,3,7,2,4,3,1)

>>> map(decrement,a)

[3, [2, [6, [1, [3, [2, [0, None]]]]]]]

Both map and filtering (reduce) are used heavily by Google in programming their search strategies.

16.10 The search pattern

The search pattern is a slight variation of filtered-counting. Suppose we wish to see if a value is present in a
list. We can use a filtered-counting approach and if the count is greater than zero, we know that the item
was indeed in the list.

def find(target,items):

return occurrences(target,items) > 0

In this case, occurrences helps find do its job. We call such functions, naturally, helper functions. We can
improve the efficiency of find by having it perform the search, but short-circuiting the search once the target
item is found. We do this by turning the first recursive case into a second base case:

def find(target,items):

if (items == None):

return False

elif (head(items) == target): # short-circuit!

return True

else:

return find(target,tail(items))

When the list is empty, we return false because if the item had been list, we would have hit the second base
case (and returned true) before hitting the first. If neither base case hits, we simple search the remainder of
the list (the recursive case). If the second base case never hits, the first base case eventually will.

16.11 The shuffle pattern

Sometimes, we wish to combine two lists. This is easy to do with the append operator:

append(list1,list2)

This places the first element in the second list after the last element in the first list. However, many times
we wish to intersperse the elements from the first list with the elements in the second list. This is known
as a shuffle, so named since it is similar to shuffling a deck of cards. When a deck of cards is shuffled, the
deck is divided in two halves (one half is akin to the first list and the other half is akin to the second list).
Next the two halves are interleaved back into a single deck (akin to the resulting third list). Note that while
appending is destructive, in that it changes the first list, shuffling is non-destructive, in the neither of the
shuffled lists are modified.



16.12. THE MERGE PATTERN 117

We can use recursion to shuffle two lists. If both lists are exactly the same length, the recursive function is
easy to implement using the accumulate pattern:

def shuffle(list1,list2):

if (list1 == None):

return None

else:

rest = shuffle(tail(list1),tail(list2))

return join(head(list1),join(head(list2),rest))

If list1 is empty (which means list2 is empty since they have the same number of elements), the function
returns the empty, since shuffling nothing together yields nothing. Otherwise, we shuffle the tails of the lists
(the result is stored in the temporary variable rest), then join the the first elements of each list to the shuffled
remainders.

If you have ever shuffled a deck of cards, you will know that it is rare for the deck to be split exactly in
half prior to the shuffle. Can we amend our shuffle function to deal with this problem? Indeed, we can, by
simply placing the extra cards (list items) at the end of the shuffle. We don’t know which list (list1 or list2)
will go empty first, so we test for each list becoming empty in turn:

def shuffle2(list1,list2):

if (list1 == None):

return list2

elif (list2 == None):

return list1

else:

rest = shuffle2(tail(list1),tail(list2))

return join(head(list1),join(head(list2),rest))

If either list is empty, we return the other. Only if both are not empty do we execute the recursive case.

One can make shuffling even simpler by manipulating the recursive call that shuffles the remainder of the
lists. If we flip the order of the lists in the recursive call, we only need to deal with the first list becoming
empty:

def shuffle3(list1,list2):

if (list1 == None):

return list2

else:

return join(head(list1),shuffle3(list2,tail(list1)))

Note that in the recursive call, we take the tail of list1 since we joined the head of list1 to the resulting
shuffle. The base case returns list2 because if list1 is empty, the “shuffle” of the remaining elements is just
list2. Also, even if list1 and list2 are both empty, the base case test returns the correct value, None.

Finally, note how much simpler it is to shuffle two lists using recursion as compared to shuffling two arrays
with loops.

16.12 The merge pattern

With the shuffle pattern, we always took the head elements from both lists at each step in the shuffling
process. Sometimes, we wish to place a constraint of the choice of elements. For example, suppose the two
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lists to be combined are sorted and we wish the resulting list to be sorted as well. The following example
shows that shuffling does not always work:

>>> a = ListCreate(1,4,6,7,8,11)

>>> b = ListCreate(2,3,5,9)

>>> c = shuffle3(a,b)

[1, [2, [4, [3, [6, [5, [7, [9, [8, [11, None]]]]]]]]]]

The merge pattern is used to ensure the resulting list is sorted and is based upon the filtered-accumulate
pattern. We only accumulate an item if it is the smallest item in the two lists:

def merge(list1,list2):

if (list1 == None):

return list2

elif (list2 == None):

return list1

elif (head(list1) < head(list2)):

return join(head(list1),merge(tail(list1),list2))

else:

return join(head(list2),merge(list1,tail(list2)))

As with shuffle2, we don’t know which list will become empty first, so we check both in turn.

In the first recursive case, the first element of the first list is smaller than the first element of the second list.
So we accumulate the first element of the first list and recur, sending the tail of the first list because we have
used/accumulated the head of that list. The second list we pass unmodified, since we did not use/accumulate
an element from the second list.

In the second recursive case, we implement the symmetric version of the first recursive case, focusing on the
second list rather than the first.

16.13 The generic merge pattern

The merge function in the previous section hard-wired the comparison operator to <. Many times, the
elements of the lists to be merged cannot be compared with < or, if they can, a different operator, such as
>, might be desired. The generic merge solves this problem by allowing the caller to pass in a comparison
function as a third argument:

def genericMerge(list1,list2,pred):

where pred is the formal parameter that holds a predicate function7. Now we replace the < in merge with a
call to pred.

def genericMerge(list1,list2,pred):

if (list1 == None):

return list2

elif (list2 == None):

7Recall that a predicate function returns True or False.
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return list1

elif (pred(head(list1),head(list2))):

return join(head(list1),genericMerge(tail(list1),list2,pred))

else:

return join(head(list2),genericMerge(list1,tail(list2),pred))

The pred function, which is passed the two head elements, returns True, if the first element should be
accumulated, and False, otherwise.

We can still use genericMerge to merge two sorted lists of numbers (which can be compared with ¡) by using
the operator module. The operator module provides function forms of the operators +, -, <, and so on.

>>> import operator

>>> a = ListCreate(1,4,6,7,8,11)

>>> b = ListCreate(2,3,5,9)

>>> c = genericMerge(a,b,operator.lt)

[1, [2, [3, [4, [5, [6, [7, [8, [9, [11, None]]]]]]]]]]

The genericMerge function is a generalization of merge. When we generalize a function, we modify it so it
can do what it did before plus new things that it could not. Here, we can still have it (genericMerge) do
what it (merge) did before, by passing in the less than comparison operator. We can use it to merge two
lists sorted in increasing order by passing in the greater than comparison operator.

16.14 The fossilized pattern

If a recursive function mistakenly never makes the problem smaller, the problems is said to be fossilized.
Without ever smaller problems, the base case is never reached and the function recurs8 forever. This condition
is known as an infinite recursive loop. Here is an example:

def factorial(n):

if (n == 0):

return 1

else:

return n * factorial(n)

Since factorial is solving the same problem over and over, n never gets smaller so it never reaches zero.
Fossilizing the problem is a common error made by both novice and expert programmers alike.

16.15 The bottomless pattern

Related to the fossilized pattern is the bottomless pattern. With the bottomless pattern, the problem gets
smaller, but the base case is never reached. Here is a function that attempts to divide a positive number by
two, by seeing how many times you can subtract two from the number:9

def div2(n):

if (n == 0):

8The word is recurs, not recurses!
9Yes, division is just repeated subtraction, just like multiplication is repeated division.
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return 0

else:

return 1 + div2(n - 2)

Things work great for a while:

>>> div2(16)

8

>>> div2(6)

3

>>> div2(134)

67

But then, something goes terribly wrong:

>>> div2(7)

RuntimeError: maximum recursion depth exceeded in cmp

What happened? To see, let’s visualize our function, as we did with the gcd function previously, by adding
a print statement:

def div2(n):

print("div2: n is",n)

if (n == 0):

return 0

else:

return 1 + div2(n - 2)

Now every time the function is called, both originally and recursively, we can see how the value of n is
changing:

>>div2(7)

div2: n is 7

div2: n is 5

div2: n is 3

div2: n is 1

div2: n is -1

div2: n is -3

div2: n is -5

div2: n is -7

...

RuntimeError: maximum recursion depth exceeded in cmp

Now we can see why things went wrong, the value of n skipped over the value of zero and just kept on going.
The solution is to change the base case to catch odd (and even) numbers:
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def div2(n):

if (n < 2):

return 0

else:

return 1 + div2(n - 2)

Remember, when you see a recursion depth exceeded error, you likely have implemented either the fossilized
or the bottomless pattern.

16.16 Code

For Linux and Mac users, the code from this chapter can be found here.

For Windows users, look here (you will need to save the file as recursion.py).
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Chapter 17

Comparing Recursion and Looping

In the previous chapters, we learned about repeatedly evaluating the same code using both recursion and
loops. Now we compare and contrast the two techniques by implementing the three mathematical functions
from Chapter ??: factorial, fibonacci, and gcd, with loops.

17.1 Factorial

Recall that the factorial function, written recursively, looks like this:

def factorial(n):

if (n == 0):

return 1

else:

return n * factorial(n - 1)

We see that is a form of the accumulate pattern. So our factorial function using a loop should look something
like this:

def factorial(n):

total = ???

for i in range(???):

total *= ???

return total

Since we are accumulating a product, total should be initialized to 1.

def factorial(n):

total = 1

for i in range(???):

total *= ???

return total

Also, the loop variable should take on all values in the factorial, from 1 to n:

def factorial(n):

123
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total = 1

for i in range(1,n+1,1):

total *= ???

return total

Finally, we accumulate i into the total:

def factorial(n):

total = 1

for i in range(1,n+1,1):

total *= i

return total

The second argument to range is set to n + 1 instead of n because we want n to be included in the total.

Now, compare the loop version to the recursive version. Both contain about the same amount of code, but
the recursive version is easier to ascertain as correct.

17.2 The greatest common divisor

Here is a slightly different version of the gcd function, built using the following recurrence:

gcd(a,b) is a if b is zero
gcd(a,b) is gcd(b,a % b) otherwise

The function allows one more recursive call than the ??. By doing so, we eliminate the need for the local
variable remainder. Here is the implementation:

def gcd(a,b):

if (b == 0):

return a

else:

return gcd(b,a % b)

Let’s turn it into a looping function. This style of recursion doesn’t fit any of the patterns we know, so we’ll
have to start from scratch. We do know that b becomes the new value of a and a % b becomes the new value
of b on every recursive call, so the same thing must happen on every evaluation of the loop body. We stop
when b is equal to zero so we should continue looping while b is not equal to zero. These observations lead
us to this implementation:

def gcd(a,b):

while (b != 0):

a = b

b = a % b

return a

Unfortunately, this implementation is faulty, since we’ve lost the original value of a by the time we perform
the modulus operation. Reversing the two statements in the body of the loop:
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def gcd(a,b):

while (b != 0):

b = a % b

a = b

return a

is no better; we lose the original value of b by the time we assign it to a. What we need to do is temporarily
save the original value of b before we assign a’s value. Then we can assign the saved value to a after b has
been reassigned:

def gcd(a,b):

while (b != 0):

temp = b

b = a % b

a = temp

return a

Now the function is working correctly. But why did we temporarily need to save a value in the loop version
and not in the recursive version? The answer is that the recursive call does not perform any assignments
so no values were lost. On the recursive call, new versions of the formal parameters a and b received the
computations performed for the function call. The old versions were left untouched.

It should be noted that Python allows simultaneous assignment that obviates the need for the temporary
variable:

def gcd(a,b):

while (b != 0):

a,b = b,a % b

return a

While this code is much shorter, it is a little more difficult to read. Moreover, other common languages do
not share this feature and you are left using a temporary variable to preserve needed values when using those
languages.

17.3 The Fibonacci sequence

Recall the recursive implementation for finding the nth Fibonacci number:

def fib(n):

if (n < 2):

return n

else:

return fib(n - 1) + fib(n - 2)

For brevity, we have collapsed the two base cases into a single base case. If n is zero, zero is returned and if
n is one, one is returned, as before.

Let’s try to implement fib using an iterative loop. As before, this doesn’t seem to fit a pattern, so we start
by reasoning about this. If we let a be the first Fibonacci number, zero, and b be the second Fibonacci
number, one, then the third fibonacci number would be a + b, which we can save in a variable named c. At
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this point, the fourth Fibonacci number would be b + c, but since we are using a loop, we need to have the
code be the same for each iteration of the loop. If we let a have the value of b and b have the value of c,
then the fourth Fibonacci number would be a + b again. This leads to our implementation:

def fib(n):

a = 0 # the first Fibonacci number

b = 1 # the second Fibonacci number

for i in range(0,n,1):

c = a + b

a = b

b = c

return a

In the loop body, we see that fib is much like gcd; the second number becomes the first number and some
combination of the first and second number becomes the second number. In the case of gcd, the combination
was the remainder and, in the case of fib, the combination is sum. A rather large question remains, why
does the function return a instead of b or c? The reason is, suppose fib was called with a value of 0, which
is supposed to generate the first Fibonacci number. The loop does not run in this case and the value of a is
returned, which is zero, as required. If a value of one is passed to fib, then the loop runs exactly once and
a gets the original value of b, which is one. The loop exits and this time, one is returned, as required. So,
empirically, it appears that the value of a is the correct choice of return value. As with factorial, hitting
on the right way to proceed iteratively is not exactly straightforward, while the recursive version practically
wrote itself.

17.4 CHALLENGE: Transforming loops into recursions

To transform an iterative loop into a recursive loop, one first identifies those variables that exist outside
the loop but are changing in the loop body; these variable will become formal parameters in the recursive
function. For example, the fib loop above has three (not two!) variables that are being changed during each
iteration of the loop: a, b, and i1. The variable c is used only inside the loop and thus is ignored.

Given this, we start out our recursive function like so:

def loop(a,b,i):

...

The loop test becomes an if test in the body of the loop function:

def loop(a,b,i)

if (i < n):

...

else:

...

The if-true block becomes the recursive call. The arguments to the recursive call encode the updates to the
loop variables. The if-false block becomes the value the loop attempted to calculate:

def loop(a,b,i):

1The loop variable is considered a outside variable changed by the loop.
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if (i < n):

return loop(b,a + b,i + 1)

else:

return a

Remember, a gets the value of b and b gets the value of c which is a + b. Since we are performing recursion
with no assignments, we don’t need the variable c anymore. The loop variable i is incremented by one each
time.

Next, we replace the loop with the the loop function in the function containing the original loop. That way,
any non-local variables referenced in the test or body of the original loop will be visible to the loop function:

def fib(n):

def loop(a,b,i):

if (i < n):

return loop(b,a + b,i + 1)

else:

return a

...

Finally, we call the loop function with the initial values of the loop variables:

def fib(n):

def loop(a,b,i):

if (i < n):

return loop(b,a + b,i + 1)

else:

return a

return loop(0,1,0)

Note that this recursive function looks nothing like our original fib. However, it suffers from none of the
inefficiencies of the original version and yet it performs no assignments.2 The reason for its efficiency is that
it performs the exact calculations and number of calculations as the iterative loop-based function.

For more practice, let’s convert the iterative version of factorial into a recursive function using this method.
We’ll again end up with a different recursive function than before. For convenience, here is the loop version:

def fact(n):

total = 1

for i in range(1,n+1,1):

total *= i

return total

We start, as before, by working on the loop function. In this case, only two variables are changing in the
loop: total and i.

def loop(total,i):

...

2A style of programming that uses no assignments is called functional programming and is very important in theorizing
about the nature of computation.



128 CHAPTER 17. COMPARING RECURSION AND LOOPING

Next, we write the if expression:

def loop(total,i):

if (i < n + 1):

return loop(total * i,i + 1)

else:

return total

Next, we embed the loop function and call it:

def fact(n):

def loop(total,i):

if (i < n + 1):

return loop(total * i,i + 1)

else:

return total

return loop(1,1)

The moral of this story is that any iterative loop can be rewritten as a recursion and any recursion can be
rewritten as an iterative loop. Moreover, in good languages,3 there is no reason to prefer one way over the
other, either in terms of the time it takes or the space used in execution. To reiterate, use a recursion if that
makes the implementation more clear, otherwise, use an iterative loop.

17.5 Code

For Linux and Mac users, the code from this chapter can be found here.

For Windows users, look here (you will need to save the file as recursion-vs-loops.py).

3Unfortunately, Python is not a good language in this regard, but the language Scheme is. When the value of a recursive
call is immediately returned (i.e., not combined with some other value), a function is said to be tail recursive. The Scheme
programming language optimizes tail recursive functions so that they are just as efficient as loops both in time and in space
utilization.
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Two-dimensional Arrays

Matrices, commonly used in mathematics, are easily represented by two-dimensional arrays in Python. A
two-dimensional array is an array whose elements are arrays themselves1. Matrices, like tables (the ones
that contain data, not the dining room kind), can be divided into rows and columns. A matrix with p rows
and q columns is said to be an pxq matrix. First, we delve into creating matrices and then we will study
using them to solve some problems.

18.1 Creating a matrix

To make a 3x3 matrix m, one starts by making an array that is 3 elements long. One could simply specify
the array directly:

m = [None,None,None] #attempt 1

Note we have initialized the array so that each slot in the array holds the value None. This approach works
fine if the size of the array is small and known in advance. In other cases, we can use a Python trick to
quickly construct an array of a given size:

m = [None] * 3 #attempt 2

We have hardwired the 3 in the above code fragment, but we could use a variable instead, unlike the first
attempt. In fact, we use this trick to define a general-purpose function that makes an array of a given size:

def createArray(size):

return [None] * size

m = createArray(3) # attempt 3

We designate this initial array as the backbone of the matrix. Pictorially, m looks like this:

m

1A three-dimensional array would be an array whose elements are arrays whose elements are arrays. Arrays of two dimensions
and higher are known as multi-dimensional arrays.
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The next step is to assign each slot in the backbone to point to an array of size 3:

m = createArray(3) #attempt 4

m[0] = createArray(3)

m[1] = createArray(3)

m[2] = createArray(3)

Now m looks like this:

m

Of course, creating the matrix this way requires we know the size in advance. If we do not, we can use a
loop to set the slots of the backbone:

size = 3

m = createArray(size) #attempt 5

for i in range(0,size,1):

m[i] = createArray(size)

This code works great if the matrix is square (i.e. the number of rows equals the number of columns). If not,
we replace size in the code above with explicit values for the number of rows and the number of columns:

rows = 3

cols = 4

m = createArray(rows) #attempt 6

for i in range(0,rows,1):

m[i] = createArray(cols)

We can see from this code that the length of the backbone corresponds to the number of rows while the
length of the arrays to which the backbone slots point represents the number of columns2. Wrapping this
code in function that creates a matrix with a given number of rows and columns yields:

def createMatrix(rows,cols):

2This choice of the backbone representing the rows is purely arbitrary, but when this choice is made, the matrix is said
to be row-ordered. If the opposite choice is made, that the backbone represents the columns, then the matrix is said to be
column-ordered. Most programming languages provide row-ordered matrices and higher dimensional arrays.
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m = createArray(rows)

for i in range(rows):

m[i] = createArray(cols)

return m

18.2 Retrieving and modifying values in a matrix

To retrieve a value at row r and column c from a matrix m, one uses an expression similar to:

value = m[r][c]

One can set the value of the element at row r and column c with an expression similar to:

m[r][c] = value

Because matrices are built from arrays, the first row has index 0 and the first column has index 0 as well.
Thus the first value in the first row in matrix m can be found at:

m[0][0]

Where is the last element in the last row found in a matrix m with x rows and y columns?

18.3 Working with matrices

Matrices are typically processed with with two nested for loops. The outer loop runs over the rows, while
the inner loop runs over the columns of each row. Here is a generic function for working with a matrix:

def processMatrix(m):

rows = len(m)

cols = len(m[0])

for r in range(0,rows,1):

for c in range(0,cols,1):

# do something with m[r][c]

return

Note how we retrieve the number of rows by determining the length of the backbone and the number of
columns be determining the length of one of the rows.

One useful thing to do with a matrix is visualize it. In other words, we might wish to print out its contents.
Using the general purpose template processMatrix as a guide, we simply substitute a print statement for the
processing comment:

def displayMatrix(m):

rows = len(m)

cols = len(m[0])
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for r in range(0,rows,1):

for c in range(0,cols,1):

print(m[r][c])

return

If we were to print this matrix: [
1 2 3
4 5 6

]

we would see this output:

1

2

3

4

5

6

The good news is we printed every element as desired. The bad news is our output looks nothing like a
matrix; every element is printed on a line by itself. We can fix this problem by using the end directive in
our print statement:

print(m[r][c],end=" ")

Recall that setting the end character to a space will convert all the newlines into spaces. Our output becomes:

1 2 3 4 5 6

Better, but we need a newline after each row is printed. The easiest way to do this is to print the newline
after the inner loop completes:

def displayMatrix(m):

rows = len(m)

cols = len(m[0])

for r in range(0,rows,1):

for c in range(0,cols,1):

print(m[r][c],end="")

print()

return

Now our output becomes:

1 2 3

4 5 6

which is a reasonable approximation to the way a matrix is supposed to look.
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18.4 Reading a 2D array from a file

Reading a 2-dimensional array from a file is similar to reading a simple array. As a reminder, here is a
function for doing just that:

def readArrayOfIntegers(fileName):

array = []

s = Scanner(fileName)

value = s.readint()

while (value != ""):

array.append(value)

value = s.readint()

s.close()

return array

This function creates an array, grows it using append, and then returns the final version of the array. If the
array already exists, things become much simpler; one can read into the array by using a variation of the
counting pattern:

def readArrayOfIntegers2(array,fileName):

s = Scanner(fileName)

for i in range(0,len(array),1):

array[i] = s.readint()

s.close()

return # procedure pattern, return value not needed

This second version assumes there is enough data in the file to fill the array. A read error would be generated
otherwise. Note that a function that fills a previously constructed array does not require a return value,
since the data read from the file is stored in the given array.

If a matrix already exists, then a reading function very similar to readArrayOfIntegers2 is easily written by
replacing the single loop with two nested loops:

def readMatrixOfIntegers(matrix,fileName):

s = Scanner(fileName)

for r in range(0,len(matrix),1): # loop over rows

for c in range(0,len(matrix[0]),1): # loop over columns

matrix[r][c] = s.readint()

s.close()

return

As a final note, use of the scanner means that the data in the input file does not need to be organized in
matrix form; all the matrix elements could be on a single line, for example.

18.5 2D patterns

Matrix patterns are very similar to patterns that loop over simple arrays. For example, here is a filtered-count
implementation for a simple array:

def countEvens(items):
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count = 0

for i in range(0,len(items),1):

if (isEven(items[i])):

count += 1

return count

The analogous function for 2D arrays is similar:

def countEvens2D(matrix):

rows = len(matrix)

cols = len(matrix[0])

count = 0

for r in range(0,rows,1):

for c in range(0,cols,1):

if (isEven(matrix[r][c])):

count += 1

return count

Indeed, most of the patterns for 2D arrays follow directly from the simple array versions. Here is an instance
of the extreme pattern:

def minValue2D(matrix):

rows = len(matrix)

cols = len(matrix[0])

min = matrix[0][0]

for r in range(0,rows,1):

for c in range(0,cols,1):

if (matrix[r][c] < min):

min = matrix[r][c]

return min

Finding the extreme index is a bit trickier since one needs to save two indices, the row and the column of
the extreme value:

def minValueIndex2D(matrix):

rows = len(matrix)

cols = len(matrix[0])

minRow = 0

minCol = 0

for r in range(0,rows,1):

for c in range(0,cols,1):

if (matrix[r][c] < matrix[minRow][minCol]):

minRow = r

minCol = c

return minRow,MinCol

One can return from the innermost loop, if one knows what one is doing:

def find2D(value,matrix):
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rows = len(matrix)

cols = len(matrix[0])

for r in range(0,rows,1):

for c in range(0,cols,1):

if (matrix[r][c] == value):

return True

return False # this return must be outside the outside loop!

Be careful where you place the return False, though.

Although the above examples are rather simple, things can get complicated. Suppose you wished to return
the index of the row with the largest sum.

def largestRow(matrix):

rows = len(matrix)

ilargestSum = 0;

largestSum = sum(matrix[0]) # sum the 1st row with a helper

for r in range(1,rows,1):

s = sum(matrix[r])

if (s > largestSum):

ilargestSum = r

largestSum = s

return ilargestSum

def sum(items):

total = 0

for i in range(0,len(items),1):

total += items[i]

return total

Curiously, the largestRow function does not appear to follow the pattern of other matrix functions; it only
has one loop over the rows. However, it calls a helper function from within its loop and that helper function
loops over the columns, so we still have our nested loops.

18.6 Simulating 2D arrays with simple arrays

Although Python and most other programming languages allow for two-dimensional arrays, some restricted
languages do not. If you are programming in such a language and need a two-dimensional array, not to
worry; two-dimensional arrays can be faked with simple arrays. The trick is to convert a two-dimensional
address (row index and column index) into a one dimensional address (simple index).

Consider this matrix:

0 1 2 3
4 5 6 7
8 9 10 11


Using our second attempt at displaying this matrix, we would have obtained the following output:

0 1 2 3 4 5 6 7 8 9 10 11
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which looks remarkably like a simple, one-dimensional array! In fact, we can think of this output representing
a simple array in which the rows of our two-dimensional array have been stored sequentially.

Now consider extracting the 6 from the 2D version. If our matrix was bound to the variable m, the location
of the 6 would be:

m[1][2]

If our simple array version were bound to the variable n, then the 6 can be found at:

n[6]

since the numbers in the array reflect the indices of the array. It turns out that there is a very simple
relationship between the 2D address and the 1D address. Since the rows are laid out sequentially in the 1D
case and since the row index in the 2D case is 1, that means there is an entire row preceding the row of
interest in the 1D case. Since the rows are 4 columns long, then four elements precede the row of interest. The
column of interest has two columns preceding it, so summing the preceding row elements and the preceding
column elements yields 6, exactly the address in the the simple array!

In general, the index of a 2D location in a 1D array can be computed by the following function:

def simple2DIndex(row,col,rowLength):

return row * rowLength + col

Note that this function must know the length of each row in order to make its computation. Note also that
the row length is simply the number of columns. If we wished to display a 1D simulation of a 2D array, our
display function might look like this:

def displaySimpleMatrix(n,cols):

rows = len(n) / cols;

for r in range(0,rows,1):

for c in range(0,cols,1):

print(n[simple2DIndex(r,c)])

print()

return

In general, when simulating a 2D array, one replaces all indexing of the form:

m[j][k]

with

m[j * cols + k]

18.7 Ragged 2D arrays

TBW
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18.8 Problems

• Modify the displayMatrix function to print out the vertical bars that delineate a matrix. That is to
say, the display function should output something like:

| 1 2 3 |

| 4 5 6 |

• Modify the displayMatrix function to make the displayed matrix even fancier:

+ +

| 1 2 3 |

| 4 5 6 |

+ +

• It is relatively easy to transpose a square matrix (a square matrix has the number of rows and the
number of columns equal). Here is a such a routine:

def transposeSquare(m,size):

for r in range(????,???,???):

for c in range(???,???,???):

m[r][c],m[c][r] = m[???][???],m[???][???]

return


