

J. David Eisenberg

Études for Erlang

Études for Erlang
by J. David Eisenberg

Copyright © 2010 O’Reilly Media . All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent Interior Designer: David Futato

March 2013: First Edition

Revision History for the First Edition:

2013-03-20: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449366452 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Etudes for Erlang and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36645-2

[]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449366452

Table of Contents

Études for Erlang. vii
Preface: What’s an étude?. xvii

1. Getting Comfortable with Erlang. 1
Étude 1-1: Experimenting with Errors 1

2. Functions and Modules. 3
Étude 2-1: Writing a Function 3
Étude 2-2: Documenting a Module 3
Étude 2-3: Documenting a Function 4

3. Atoms, Tuples, and Pattern Matching. 5
Étude 3-1: Pattern Matching 5
Étude 3-2: Guards 6
Étude 3-3: Underscores 6
Étude 3-4: Tuples as Parameters 6

4. Logic and Recursion. 9
Étude 4-1: Using case 9
Étude 4-2: Recursion 9
Étude 4-3: Non-Tail Recursive Functions 10
Étude 4-4: Tail Recursion with an Accumulator 11
Étude 4-5: Recursion with a Helper Function 11

5. Strings. 13
Étude 5-1: Validating Input 13
Étude 5-2: Using the re Module 15

6. Lists. 17

iii

Étude 6-1: Recursive Iteration through a List 17
Étude 6-2: Iteration through Lists (More Practice) 18
Étude 6-3: Accumulating the Sum of a List 18
Interlude: “Mistakes were made.” 20
Étude 6-4: Lists of Lists 21
Étude 6-5: Random Numbers; Generating Lists of Lists 22

7. Higher Order Functions and List Comprehensions. 25
Étude 7-1: Simple Higher Order Functions 25
Étude 7-2: List Comprehensions and Pattern Matching 26

Part One 26
Part Two 26

Étude 7-3: Using lists:foldl/3 27
Étude 7-4: Using lists:split/2 28
Étude 7-5: Multiple Generators in List Comprehensions 28
Étude 7-6: Explaining an Algorithm 29

8. Processes. 31
Étude 8-1: Using Processes to Simulate a Card Game 31

The Art of War 31
War: What is it good for? 32
Pay Now or Pay Later 32
The Design 32
Messages Are Asynchronous 34
Hints for Testing 34

9. Handling Errors. 31
Étude 9-1: try and catch 35
Étude 9-2: Logging Errors 35

10. Storing Structured Data. 39
Étude 10-1: Using ETS 39

Part One 39
Part Two 40
Part Three 41

Étude 10-2: Using Mnesia 42
Part One 42
Part Two 42
Part Three 43

11. Getting Started with OTP. 47
Étude 11-1: Get the Weather 48

iv | Table of Contents

Obtaining Weather Data 48
Parsing the Data 50
Set up a Supervisor 51

Étude 11-2: Wrapper Functions 52
Étude 11-3: Independent Server and Client 53
Étude 11-4: Chat Room 55

The chatroom Module 57
The person Module 57
Wrapper Functions for the person module 58
Putting it All Together 58

A. Solutions to Études. 61

Table of Contents | v

Études for Erlang

Welcome to Études for Erlang. In this book, you will find descriptions of programs that
you can write in Erlang. The programs will usually be short, and each one has been
designed to provide practice material for a particular Erlang programming concept.
These programs have not been designed to be of considerable difficulty, though they
may ask you to stretch a bit beyond the immediate material and examples that you find
in the book Introducing Erlang.

This book is open source, so if you’d like to contribute, make a correction, or otherwise
participate in the project, check out oreillymedia/etudes-for-erlang on GitHub for de‐
tails. If we accept your work, we’ll add you to the contributors chapter.

The online version of the book is at Études for Erlang on O’Reilly Labs.

Contributor Guidelines
If you’re considering making a contribution, here are some guidelines to keep in mind:
Creative Commons license.

All contributions made to this site are required to be made under the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. This
means that by making a content contribution, you are agreeing that it is licensed to
us and to others under this license. If you do not want your content to be available
under this license, you should not contribute it.

Submit only your own work.
You warrant that all work that you contribute to this site is your original work,
except for material that is in the public domain or for which you have obtained
permission. Feel free to draw from your own existing work (blogs, articles, talks,
etc.), so long as you are happy with the Creative Commons license.

Your submission may not be accepted.
Be aware that we may not be able to accept your contribution.

vii

http://shop.oreilly.com/product/0636920025818.do
https://github.com/oreillymedia/etudes-for-erlang
http://chimera.labs.oreilly.com/books/1234000000726

Keep your title pithy and to the point.
The title should only be a 2 to 10 words long if possible and should summarize or
capture the essence of the advice. Keep your discussion between 400 and 500 words.

Volunteers only.
Contributions are made on a volunteer basis — in other words, contributors are
not paid for their contributions. The contributions will be made easily available to
everyone on the Web for free. However, remember that those of you whose con‐
tributions are chosen for publication will get your name attached to your work and
your bio published next to it. Any item you contribute you can also reuse in any
form you wish, such as in a blog posting.

Only submit a pull request when you consider your work complete.
Please submit your work once it is complete. Once you make a pull request, the
editor will review the submission and (possibly) suggest some changes. Reducing
work in progress makes it easier for you to see your own progress and for others to
see the progress of the whole project.

Check spelling, word count, and formatting.
Such checking seems obvious part, but it is worth a reminder — sometimes it seems
that it is honored more in the breach than in the observance. US spelling is used
for the contributions, which should be between 400 and 500 words in length. For‐
matting can be checked by looking at the saved page in GitHub. If it looks right
there, it’s probably right.

How to Contribute
If you’re new to git and GitHub and just want to keep things as simple as possible, this
tutorial will give you a quick and easy way to make your contribution. Here are the steps
you’ll need to follow:

Create a GitHub account
To create and edit a page or to comment on an existing page, you will need to create an
account on GitHub. If you don’t have one already, then go to the GitHub Signup page.
It’s free.

viii | Études for Erlang

https://github.com/signup/free

GitHub has excellent tools for collaborating and workflow management, and will be the
primary way we communicate with you over the course of the project.

Copy (“fork”) the project repository to your account
Once you’ve got an account, fork (GitHub lingo for copying) the main project to your
account. To do this, go to the Etudes for Erlang repository on GitHub and click the
“Fork” button at the upper right hand side of the screen.

Études for Erlang | ix

https://github.com/oreillymedia/etudes-for-erlang

The following screen will appear while GitHub copies the repository to your account:

x | Études for Erlang

Edit your file using AsciiDoc
Once you’ve got the file created, you can start editing it at your leisure. Remember to:

• Mark up your text using AsciiDoc, which is similar to Markdown and other basic
wiki-like markup formats.

• Change the line wrapping from “No Wrap” to “Soft Wrap.” Otherwise, all your text
will appear on a single line.

To edit the file, all you have to do is click its name in the directory listing in GitHub and
then press the “Edit” button.

If you want to add an entirely new topic area, you’ll need to create a new file in GitHub.
To do this, click the “+” button next to the directory name to create a new file

Locate the small “+” sign next to the repository name. (A tooltip will appear that says
“Create a new file here” when you hover your mouse above it.) Click the “\+” button:

Études for Erlang | xi

http://powerman.name/doc/asciidoc

In the new screen, you’ll need to:

• Enter a name for the file. Name the file according to the general topic area, and be
sure to include the extension “.asciidoc” at the end. For example,
“foo_and_bar.asciidoc”.

• Enter the chapter title in the editing box; it should be prefaced with two “==” signs.
For example, “== Always Foo the Bar”

• Once you’ve entered the filename and title, the “Commit Changes” button at the
bottom of the screen will activate. Click the button to save your file.

You will see something like this:

xii | Études for Erlang

Double check your submission and add your biography
Before you submit your request, make sure that you have:

• Run a spell check
• Make sure it’s 400-500 words in length
• Add your name and a short biography
• Check the formatting to make sure it looks OK

Your biography should look like this:

.About the Author
[NOTE]

Name::
 Nicola Tesla
Biography::
 Nicola Tesla is an inventor, electrical engineer, mechanical engineer, physicist, and futurist best known for his contributions to the design of the modern alternating current (AC) electrical supply system.

Études for Erlang | xiii

Submit a pull request
Once you’ve completed and double checked your submission, you’re ready to submit it
back to O’Reilly. This is done by creating a “pull request” that will trigger the review
process.

When you submit the pull request, you’ll also be able to submit some additional infor‐
mation that will help us track your work:

• A title. Please enter your name and the title of the contribution. For example, “An‐
drew Odewahn: Always Foo the Bar”

• A comment. Tell us a little bit about your contribution, as well as anything else you
think we should know.

xiv | Études for Erlang

Engage in back-and-forth
Once you submit your pull request, the project’s maintainers will begin a back and forth
with you in the discussion features. You might be asked to make some revisions, shorten
it, add additional elements, and so forth.

Études for Erlang | xv

Preface: What’s an étude?

An étude, according to Wikipedia, is “an instrumental musical composition, usually
short and of considerable difficulty, usually designed to provide practice material for
perfecting a particular musical skill.”

What are Études for Erlang?
In this book, you will find descriptions of programs that you can compose (write) in
Erlang.The programs will usually be short, and each one has been designed to provide
practice material for a particular Erlang programming concept. Unlike musical études,
these programs have not been designed to be of considerable difficulty, though they may
ask you to stretch a bit beyond the immediate material and examples that you find in
the book Introducing Erlang.

How This Book was Written
While reading the early release version of Introducing Erlang, I began by copying the
examples in the book. (This always helps me learn the material better.) I then began
experimenting with small programs of my own to make sure I really understood the
concepts. As I continued writing my own examples, I thought they might be useful to
other people as well. I contacted Simon St. Laurent, the author of Introducing Erlang,
and he liked the idea of having these companion exercises and suggested naming them
études. At some point, the études took on a life of their own, and you are reading the
result now.

I was learning Erlang as I was creating the solutions to the études, following the phi‐
losophy that “the first way that works is the right way.” Therefore, don’t be surprised if
you see some fairly naïve code that an expert Erlang programmer would never write.

xvii

http://shop.oreilly.com/product/0636920025818.do

Working with Other Books
Although this was based on Introducing Erlang, you can use it with other Erlang books.
A note at the beginning of each chapter will point you to relevant sections in other books.
The books listed through are:

• Erlang Programming, by Francesco Cesarini, and Simon Thompson (O’Reilly Me‐
dia, 2009).

• Programming Erlang, by Joe Armstrong (Pragmatic Programmers, 2007).
• Erlang and OTP in Action by Martin Logan, Eric Merritt, and Richard Carlsson

(Manning, 2010).
• Learn You Some Erlang for Great Good! by Fred Hebert (No Starch Press, 2013) -

also available at http://learnyousomeerlang.com/.

Acknowledgments
Many thanks to Simon St. Laurent, who wrote Introducing Erlang. His book not only
got me to begin to understand functional programming, but also made me realize that
it was a lot of fun. Simon also felt that the exercises I was writing for myself could be
useful to others, and he encouraged me to continue developing them.

Have any suggested topics?
Suggest topics you’d like to see covered here, or just go add them yourself at oreillymedia/
etudes-for-erlang on GitHub.

xviii | Preface: What’s an étude?

http://shop.oreilly.com/product/9780596518189.do
http://pragprog.com/book/jaerlang/programming-erlang
http://www.manning.com/logan/
http://nostarch.com/erlang
http://learnyousomeerlang.com/
https://github.com/oreillymedia/etudes-for-erlang
https://github.com/oreillymedia/etudes-for-erlang

CHAPTER 1

Getting Comfortable with Erlang

You can learn more about working with erl in Chapter 2 of Erlang
Programming, Chapters 2 and 6 of Programming Erlang, Section 2.1 of
Erlang and OTP in Action, and Chapter 1 of Learn You Some Erlang For
Great Good!.

Étude 1-1: Experimenting with Errors
The first chapter of Introducing Erlang encourages you to play around with the inter‐
acative erl system. In this étude, keep using erl, but purposely make errors.

Try leaving out parentheses in arithmetic expressions. Try putting numbers next to each
other without an operator between them. Try adding "adam" to 12. Make up variable
names that you are sure Erlang wouldn’t ever accept.

That way, you’ll get a feel for the sort of error messages Erlang produces and not be as
baffled when you get errors that you aren’t expecting.

1

http://shop.oreilly.com/product/0636920025818.do

CHAPTER 2

Functions and Modules

You can learn more about working with functions and modules in
Chapters 2, 3, and 9 of Erlang Programming, Chapter 3 of Programming
Erlang, Sections 2.3, 2.5, and 2.7 of Erlang and OTP in Action, and
Chapters 2 and 3 of Learn You Some Erlang For Great Good!. There’s
more on documentation in Chapter 18 of Erlang Programming and types
in Chapter 30 of Learn You Some Erlang For Great Good!.

Étude 2-1: Writing a Function
Write a module with a function that takes the length and width of a rectangle and returns
(yields) its area. Name the module geom, and name the function area. The function has
arity 2, because it needs two pieces of information to make the calculation. In Erlang-
speak: write function area/2.

Here is some sample output.

1> c(geom).
{ok,geom}
2> geom:area(3,4).
12
3> geom:area(12,7).
84

See a suggested solution in Appendix A.

Étude 2-2: Documenting a Module
Document the geom module you wrote in Étude 2-1. See a suggested solution in Ap‐
pendix A.

3

Étude 2-3: Documenting a Function
Document the area/2 function, and create an overview.edoc file to complete the docu‐
mentation of the application you’ve written. See a suggested solution in Appendix A.

4 | Chapter 2: Functions and Modules

CHAPTER 3

Atoms, Tuples, and Pattern Matching

You can learn more about working with atoms, tuples, and pattern
matching in Chapter 2 of Erlang Programming, Chapter 2 of Program‐
ming Erlang, Sections 2.2 and 2.4 of Erlang and OTP in Action, and
Chapters 1 and 3 of Learn You Some Erlang For Great Good!.

Étude 3-1: Pattern Matching
Use atoms and pattern matching to make your area function calculate the area of a
rectangle, triangle, or ellipse. If your parameters are Shape, A and B, the area for the atom
rectangle is A * B, where A and B represent the length and width. For a triangle atom,
the area is A * B / 2.0, with A and B representing the base and height of the triangle.
For an ellipse atom, the area is math:pi() * A * B, where A and B represent the major
and minor radiuses.

Here is some sample output.

1> c(geom).
{ok,geom}
2> geom:area(rectangle, 3, 4).
12
3> geom:area(triangle, 3, 5).
7.5
4> geom:area(ellipse, 2, 4).
25.132741228718345

See a suggested solution in Appendix A.

5

Étude 3-2: Guards
Even though you won’t get an error message when calculating the area of a shape that
has negative dimensions, it’s still worth guarding your area/3 function. You will want
two guards for each pattern to make sure that both dimensions are greater than or equal
to zero. Since both have to be non-negative, use commas to separate your guards.

Here is some sample output.

1> c(geom).
{ok,geom}
2> geom:area(rectangle, 3, 4).
12
3> geom:area(ellipse, 2, 3).
18.84955592153876
4> geom:area(triangle, 4, 5).
10.0
5> geom:area(square, -1, 3).
** exception error: no function clause matching geom:area(square,-1,3) (geom.erl, line 18)

See a suggested solution in Appendix A.

Étude 3-3: Underscores
If you enter a shape that area/3 doesn’t know about, or if you enter negative dimensions,
Erlang will give you an error message. Use underscores to create a “catch-all” version,
so that anything at all that doesn’t match a valid rectangle, triangle, or ellipse will return
zero. This goes against the Erlang philosophy of “let it fail,” but let’s look the other way
and learn about underscores anyway.

Here is some sample output.

1> geom:area(rectangle, 3, 4).
12
2> geom:area(pentagon, 3, 4).
0
3> geom:area(hexagon, -1, 5).
0
4> geom:area(rectangle, 1, -3).
0

See a suggested solution in Appendix A.

Étude 3-4: Tuples as Parameters
Add an area/1 function that takes a tuple of the form {shape,number,number} as its
parameter. Export it instead of area/3. The area/1 function will call the private area/
3 function.

6 | Chapter 3: Atoms, Tuples, and Pattern Matching

Here is some sample output.

1> c(geom).
{ok,geom}
2> geom:area({rectangle, 7, 3}).
21
3> geom:area({triangle, 7, 3}).
10.5
4> geom:area({ellipse, 7, 3}).
65.97344572538566

See a suggested solution in Appendix A.

Étude 3-4: Tuples as Parameters | 7

CHAPTER 4

Logic and Recursion

You can learn more about working with logical flow and recursion in
Chapter 3 of Erlang Programming, Chapter 3 of Programming Erlang,
Sections 2.6 and 2.15 of Erlang and OTP in Action, and Chapters 3 and
5 of Learn You Some Erlang For Great Good!.

Étude 4-1: Using case
Change the area/3 function that you wrote in Étude 3-2 so that it uses a case instead
of pattern matching. Use a guard on the function definition to ensure that the numeric
arguments are both greater than zero.

See a suggested solution in Appendix A.

Étude 4-2: Recursion
This is a typical exercise for recursion: finding the greatest common divisor (GCD) of
two integers. Instead of giving Euclid’s method, we’ll do this with a method devised by
Edsger W. Dijkstra. The neat part about Dijkstra’s method is that you don’t need to do
any division to find the result. Here is the method.

To find the GCD of integers M and N:

• If M and N are equal, the result is M.
• If M is greater than N, the result is the GCD of M - N and N
• Otherwise M must be less than N, and the result is the GCD of M and N - M.

Write a function gcd/2 in a module named dijkstra that implements the algorithm.
This program is an ideal place to use Erlang’s if construct. Here is some sample output.

9

1> c(dijkstra).
{ok,dijkstra}
2> dijkstra:gcd(12, 8).
4
3> dijkstra:gcd(14, 21).
7
4> dijkstra:gcd(125, 46).
1
5> dijkstra:gcd(120, 36).
12

See a suggested solution in Appendix A.

The next two exercises involve writing code to raise a number to an integer power (like
2.53 or 4-2) and finding the nth root of a number, such as the cube root of 1728 or the
fifth root of 3.2.

These capabilities already exist with the math:pow/2 function, so you may wonder why
I’m asking you to re-invent the wheel. The reason is not to replace math:pow/2, but to
experiment with recursion by writing functions that can be expressed quite nicely that
way.

Étude 4-3: Non-Tail Recursive Functions
Create a module named powers (no relation to Francis Gary Powers), and write a func‐
tion named raise/2 which takes parameters X and N and returns the value of XN.

Here’s the information you need to know to write the function:

• Any number to the power 0 equals 1.
• Any number to the power 1 is that number itself — that stops the recursion.
• When N is positive, XN is equal to X times X(N - 1) — there’s your recursion.
• When N is negative, XN is equal to 1.0 / XN

Note that this function is not tail recursive. Here is some sample output.

1> c(powers).
{ok,powers}
2> powers:raise(5, 1).
5
3> powers:raise(2, 3).
8
4> powers:raise(1.2, 3).
1.728
5> powers:raise(2, 0).
1
6> powers:raise(2, -3).
0.125

10 | Chapter 4: Logic and Recursion

See a suggested solution in Appendix A.

Étude 4-4: Tail Recursion with an Accumulator
Practice the “accumulator trick.” Rewrite the raise/2 function for N greater than zero
so that it calls a helper function raise/3 This new function has X, N, and an Accumula
tor as its parameters.

Your raise/2 function will return 1 when N is equal to 0, and will return 1.0 / raise(X,
-N) when N is less than zero.

When N is greater than zero, raise/2 will call raise/3 with arguments X, N, and 1 as the
Accumulator.

The raise/3 function will return the Accumulator when N equals 0 (this will stop the
recursion).

Otherwise, recursively call raise/3 with X, N - 1, and X times the Accumulator as its
arguments.

The raise/3 function is tail recursive.

Étude 4-5: Recursion with a Helper Function
In this exercise, you will add a function nth_root/2 to the powers module. This new
function finds the nth root of a number, where n is an integer. For example,
nth_root(36, 2) will calculate the square root of 36, and nth_root(1.728, 3) will
return the cube root of 1.728.

The algorithm used here is the Newton-Raphson method for calculating roots. (See
http://en.wikipedia.org/wiki/Newton%27s_method for details).

You will need a helper function nth_root/3, whose parameters are X, N, and an ap‐
proximation to the result, which we will call A. nth_root/3 works as follows:

• Calculate F as (AN - X)
• Calculate Fprime as N * A(N - 1)

• Calculate your next approximation (call it Next) as A - F / Fprime
• Calculate the change in value (call it Change) as the absolute value of Next - A
• If the Change is less than some limit (say, 1.0e-8), stop the recursion and return
Next; that’s as close to the root as you are going to get.

• Otherwise, call the nth_root/3 function again with X, N, and Next as its arguments.

Étude 4-4: Tail Recursion with an Accumulator | 11

http://en.wikipedia.org/wiki/Newton%27s_method

For your first approximation, use X / 2.0. Thus, your nth_root/2 function will simply
be this:

nth_root(X, N) → nth_root(X, N, X / 2.0)

Use io:format to show each new approximation as you calculate it. Here is some sample
output.

1> c(roots).
{ok,roots}
2> roots:nth_root(27, 3).
Current guess is 13.5
Current guess is 9.049382716049383
Current guess is 6.142823558176272
Current guess is 4.333725614685509
Current guess is 3.3683535855517652
Current guess is 3.038813723595138
Current guess is 3.0004936436555805
Current guess is 3.000000081210202
Current guess is 3.000000000000002
3.0

See a suggested solution in Appendix A.

12 | Chapter 4: Logic and Recursion

CHAPTER 5

Strings

You can learn more about working with strings in Chapter 2 of Erlang
Programming, Sections 2.11 and 5.4 of Programming Erlang, Section
2.2.6 of Erlang and OTP in Action, and Chapter 1 of Learn You Some
Erlang For Great Good!.

Étude 5-1: Validating Input
The Erlang philosophy is “let it crash”; this makes a great deal of sense for a telecom‐
munications system (which is what Erlang was first designed for). Hardware is going
to fail. When it does, you just replace it or restart it. The person using the phone system
is unaware of this; her phone just continues to work.

This philosophy, however, is not the one you want to employ when you have (atypical
for Erlang) programs that ask for user input. You want to those to crash infrequently
and catch as many input errors as possible.

In this étude, you will write a module named ask_area, which prompts you for a shape
and its dimensions, and then returns the area by calling geom:area/3, which you wrote
in Étude 4-1.

Your module will ask for the first letter of the shape (in either upper or lower case), then
the appropriate dimensions. It should catch invalid letters, non-numeric input, and
negative numbers as input. Here is some sample output.

1> c(ask_area).
{ok,ask_area}
2> c(geom).
{ok,geom}
3> ask_area:area().
R)ectangle, T)riangle, or E)llipse > r
Enter width > 4

13

Enter height > 3.7
14.8
4> ask_area:area().
R)ectangle, T)riangle, or E)llipse > T
Enter base > 3
Enter height > 7
10.5
5> ask_area:area().
R)ectangle, T)riangle, or E)llipse > x
Unknown shape x
ok
6> ask_area:area().
R)ectangle, T)riangle, or E)llipse > r
Enter width > -3
Enter height > 4
Both numbers must be greater than or equal to zero.
ok
7> ask_area:area().
R)ectangle, T)riangle, or E)llipse > e
Enter major axis > three
Enter minor axis > 2
Error in first number.

Here are the functions that I needed to write in order to make this program work.
char_to_shape/1

Given a character parameter (R, T, or E in either upper or lower case), return an
atom representing the specified shape (rectangle, triangle, ellipse, or un
known if some other character is entered).

get_number/1

Given a string as a prompt, displays the string "Enter prompt > " and returns the
number that was input. Your function should accept either integers or floats. Fun
fact: string:to_float/1 requires a decimal point; if you just enter input like "3",
you will receive {error,no_float} for your efforts. That means that you should
try to convert to float first, and if that fails, try a conversion to integer. It was at this
point that I felt like the guy who is beating his head against a wall, and, when asked,
“Why are you doing that?” responds, “Because it feels so good when I stop.”

get_dimensions/2

Takes two prompts as its parameters (one for each dimension), and calls get_num
ber/1 twice. Returns a tuple {N1, N2} with the dimensions.

calculate/3

Takes a shape (as an atom) and two dimensions as its parameters. If the shape is
unknown, or the first or second dimension isn’t numeric, or either number is nega‐
tive, the function displays an appropriate error message. Otherwise, the function
calls geom:area/3 to calculate the area of the shape.

14 | Chapter 5: Strings

See a suggested solution in Appendix A.

Étude 5-2: Using the re Module
Write a module named dates that contains a function date_parts/1, which takes a
string in ISO date format ("yyyy-mm-dd") and returns a list of integers in the form
[yyyy, mm, dd]. This function does not need to do any error checking.

You’ll use the re:split/3 function from Erlang’s regular expression (re) module to
accomplish the task. How, you may ask, does that function work? Ask Erlang! The
command erl -man re will give you the online documentation for the re module.

Scroll down the resulting page until you find split(Subject, RE, Options) → Split
List and read the examples.

When you write the -spec for this function (you have been writing documentation for
your functions, haven’t you?), the type you will use for the parameter is string().

You can see a complete list of the built-in types at http://www.erlang.org/
doc/reference_manual/typespec.html

Yes, I know this étude seems pointless, but trust me: I’m going somewhere with this.
Stay tuned.

See a suggested solution in Appendix A.

Étude 5-2: Using the re Module | 15

http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html

CHAPTER 6

Lists

You can learn more about working with lists in Chapter 2 of Erlang
Programming, Sections 2.10 and 3.5 of Programming Erlang, Section
2.2.5 of Erlang and OTP in Action, and Chapter 1 of Learn You Some
Erlang For Great Good!.

Étude 6-1: Recursive Iteration through a List
In a module named stats, write a function named minimum/1. It takes a list of numbers
as its argument and returns the smallest value. This function already exists in the lists
module (lists:min/1), but it’s a good exercise in learning about recursion.

Here’s the pseudocode.

• Call function minimum/2, which takes the list as its first argument and the “smallest
number so far” (the current candidate) as its second argument. The starting value
will be the head of the original number list passed to minimum/1.

• When the list passed to minimum/2 is empty, the final result is the current candidate.
This stops the recursion.

• If the list passed to minimum/2 is not empty, then see if the head of the list is less
than the current candidate.
— If so, call minimum/2 with the tail of the list as the first argument and the list head

(the new “smallest number”) as the second argument.
— If not, call minimum/2 with the tail of the list as the first argument and the current

candidate (still the “smallest number”) as the second argument.

17

Unlike most examples in Introducing Erlang, passing an empty list to this function will
make it crash. That’s a reasonable thing to do, as an empty list can’t really be said to have
a minimum value.

1> c(stats).
{ok,stats}
2> N = [4, 1, 7, -17, 8, 2, 5].
[4,1,7,-17,8,2,5]
3> stats:minimum(N).
-17
4> stats:minimum([]).
** exception error: bad argument
 in function hd/1
 called as hd([])
 in call from stats:minimum/1 (stats.erl, line 15)
5> stats:minimum([52.46]).
52.46

See a suggested solution in Appendix A.

Étude 6-2: Iteration through Lists (More Practice)
Add two more functions to the stats module:

maximum/1, which is just the same as minimum/1, but don’t forget—as I did—to reverse
the direction of your test for “smaller” to become a test for “larger.” (This function also
already exists as lists:max/1.)

range/1, which takes a list of numbers as its argument and returns a list of two numbers:
the minimum and maximum entries in the list.

1> c(stats).
{ok,stats}
2> N = [4, 1, 7, -17, 8, 2, 5].
[4,1,7,-17,8,2,5]
3> stats:maximum(N).
8
4> stats:range(N).
[-17,8]

See a suggested solution in Appendix A.

Étude 6-3: Accumulating the Sum of a List
Add a function julian/1 to the dates module that you wrote in Étude 5-2. Given a
string in ISO format ("yyyy-mm-dd"), it returns the Julian date: the day of the year.

Here is some sample output.

18 | Chapter 6: Lists

http://shop.oreilly.com/product/0636920025818.do

1> c(dates).
{ok,dates}
2> dates:julian("2012-12-31").
366
3> dates:julian("2013-12-31").
365
4> dates:julian("2012-02-05").
36
5> dates:julian("2013-02-05").
36
6> dates:julian("1900-03-01").
60
7> dates:julian("2000-03-01").
61
126> dates:julian("2013-01-01").
1

The julian/1 function defines a 12-item list called DaysPerMonth that contains the
number of days in each month, splits the date into the year, month, and day (using the
date_parts/1 function you wrote in Étude 5-2, and then calls helper function julian/
5 (yes, 5).

The julian/5 function does all of the work. Its arguments are the year, month, day, the
list of days per month, and an accumulated total, which starts at zero. julian/5 takes
the head of the days per month list and adds it to the accumulator, and then calls julian/
5 again with the tail of the days per month list and the accumulator value as its last two
arguments.

Let’s take, as an example, the sequence of calls for April 18, 2013:

julian(2013, 4, 18, [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31], 0).
julian(2013, 4, 18, [28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31], 31).
julian(2013, 4, 18, [31, 30, 31, 30, 31, 31, 30, 31, 30, 31], 59).
julian(2013, 4, 18, [30, 31, 30, 31, 31, 30, 31, 30, 31], 90).

At this point, the accumulator has all the days up through the beginning of April, so the
last call to julian/5 just adds the 18 remaining days and yields 108 as its result.

You know you are doing the last call when you have “used up” the first month-1 items
in the list of days per month. That happens when the month number is greater than (13
- length(days_per_month_list)).

Of course, there’s still the problem of leap years. For non-leap years, the last call to
julian/5 adds the number of days in the target month. For leap years, the function
must add the number of days in the target month plus one—but only if the month is
after February.

I’ll give you the code for the is_leap_year/1 function for free; it returns true if the
given year is a leap year, false otherwise.

Étude 6-3: Accumulating the Sum of a List | 19

is_leap_year(Year) ->
 (Year rem 4 == 0 andalso Year rem 100 /= 0)
 orelse (Year rem 400 == 0).

See a suggested solution in Appendix A.

Interlude: “Mistakes were made.”
As I was writing the next two études, I tried, despite the examples in the book, to avoid
using lists:reverse/1. I thought, “Why can’t I add items to the end of a list using the
cons (vertical bar; |) notation?” Here’s why.

I decided to do a simple task: take a list of numbers and return a list consisting of the
squares of the numbers. I tried adding new items to the end of the list with this code:

-module(bad_code).
-export([squares/1]).

squares(Numbers) -> squares(Numbers, []).

squares([], Result) -> Result;

squares([H | T], Result) -> squares(T, [Result | H * H]).

The resulting list was in the correct order, but it was an improper list.

1> c(bad_code).
{ok,bad_code}
2> bad_code:squares([9, 4.22, 5]).
[[[[]|81]|17.8084]|25]

That didn’t work. Wait a minute—the book said that the right hand side of the cons (|)
operator should be a list. “OK, you want a list?” I thought. “I’ve got your list right here.”
(See the last line of the code, where I wrap the new item in square brackets.)

squares2(Numbers) -> squares2(Numbers, []).

squares2([], Result) -> Result;

squares2([H | T], Result) -> squares2(T, [Result | [H * H]]).

There. That should do the trick.

6> c(bad_code).
{ok,bad_code}
7> bad_code:squares2([9, 4.22, 5]).
[[[[],81],17.8084],25]

The result was better, but only slightly better. I didn’t have an improper list any more,
but now I had a list of list of list of lists. I could fix the problem by changing one line to
flatten the final result.

squares2([], Result) -> lists:flatten(Result);

20 | Chapter 6: Lists

That worked, but it wasn’t a satisfying solution.

• The longer the original list, the more deeply nested the final list would be,
• I still had to call a function from the lists module, and
• A look at http://www.erlang.org/doc/efficiency_guide/listHandling.html showed that
lists:flatten is a very expensive operation.

In light of all of this, I decided to use lists:reverse/1 and write the code to generate
a proper, non-nested list.

-module(good_code).
-export([correct_squares/1]).

correct_squares(Numbers) -> correct_squares(Numbers, []).

correct_squares([], Result) -> lists:reverse(Result);

correct_squares([H | T], Result) ->
 correct_squares(T, [H * H | Result]).

1> c(good_code).
{ok,good_code}
2> good_code:correct_squares([9, 4.22, 5]).
[81,17.8084,25]

Success at last! The moral of the story?

• RTFM (Read the Fabulous Manual).
• Believe what you read.
• If you don’t believe what you read, try it and find out.
• Don’t worry if you make this sort of mistake. You won’t be the first person to do so,

and you certainly won’t be the last.
• When using cons, “lists come last.”

OK. Back to work.

Étude 6-4: Lists of Lists
Dentists check the health of your gums by checking the depth of the “pockets” at six
different locations around each of your 32 teeth. The depth is measured in millimeters.
If any of the depths is greater than or equal to four millimeters, that tooth needs atten‐
tion. (Thanks to Dr. Patricia Lee, DDS, for explaining this to me.)

Your task is to write a module named teeth and a function named alert/1. The func‐
tion takes a list of 32 lists of six numbers as its input. If a tooth isn’t present, it is repre‐

Étude 6-4: Lists of Lists | 21

http://www.erlang.org/doc/efficiency_guide/listHandling.html

sented by the list [0] instead of a list of six numbers. The function produces a list of the
tooth numbers that require attention. The numbers must be in ascending order.

Here’s a set of pocket depths for a person who has had her upper wisdom teeth, numbers
1 and 16, removed. Just copy and paste it.

PocketDepths = [[0], [2,2,1,2,2,1], [3,1,2,3,2,3],
[3,1,3,2,1,2], [3,2,3,2,2,1], [2,3,1,2,1,1],
[3,1,3,2,3,2], [3,3,2,1,3,1], [4,3,3,2,3,3],
[3,1,1,3,2,2], [4,3,4,3,2,3], [2,3,1,3,2,2],
[1,2,1,1,3,2], [1,2,2,3,2,3], [1,3,2,1,3,3], [0],
[3,2,3,1,1,2], [2,2,1,1,3,2], [2,1,1,1,1,2],
[3,3,2,1,1,3], [3,1,3,2,3,2], [3,3,1,2,3,3],
[1,2,2,3,3,3], [2,2,3,2,3,3], [2,2,2,4,3,4],
[3,4,3,3,3,4], [1,1,2,3,1,2], [2,2,3,2,1,3],
[3,4,2,4,4,3], [3,3,2,1,2,3], [2,2,2,2,3,3],
[3,2,3,2,3,2]].

And here’s the output:

1> c(teeth).
{ok,teeth}
2> teeth:alert(PocketDepths).
[9,11,25,26,29]

See a suggested solution in Appendix A.

Étude 6-5: Random Numbers; Generating Lists of Lists
How do you think I got the numbers for the teeth in the preceding étude? Do you really
think I made up and typed all 180 of them? No, of course not. Instead, I wrote an Erlang
program to create the list of lists for me, and that’s what you’ll do in this étude.

In order to create the data for the teeth, I had to generate random numbers with Erlang’s
random module. Try generating a random number uniformly distributed between 0 and
1.0 by typing this in erl:

1> random:uniform().
0.4435846174457203

Now, exit erl, restart, and type the same command again. You’ll get the same number.
In order to ensure that you get different sets of random numbers, you have to seed the
random number generator with a three-tuple. The easiest way to get a different seed
every time you run the program is to use the now/0 built-in function, which returns a
different three-tuple every time you call it.

1> now().
{1356,887000,432535}
2> now().
{1356,887002,15527}

22 | Chapter 6: Lists

3> now().
{1356,887003,831752}

Exit erl, restart, it and try these commands. Do this a couple of times to convince
yourself that you really get different random numbers. Don’t worry about the unde
fined; that’s just Erlang’s way of telling you that the random number generator wasn’t
seeded before.

1> random:seed(now()).
undefined
2> random:uniform().
0.27846009966109264

If you want to generate a random integer between 1 and N, use uniform/1; thus ran
dom:uniform(10) will generate a random integer from 1 to 10.

Functions that use random numbers have side effects; unlike the sin or sqrt function,
which always gives you the same numbers for the same input, functions that use random
numbers should always give you different numbers for the same input. Since these
functions aren’t “pure,” it’s best to isolate them in a module of their own.

In this étude, create a module named non_fp, and write a function
generate_teeth/3. This function has a string consisting of the characters T and F for
its first argument. A T in the string indicates that the tooth is present, and a F indicates
a missing tooth. In Erlang, a string is a list of characters, so you can treat this string just
as you would any other list. Remember to refer to individual characters as $T and $F.

The second argument is a floating point number between 0 and 1.0 that indicates the
probability that a tooth will be a good tooth.

These are the helper functions I needed:
generate_teeth/3

The first two arguments are the same as for generate_teeth/2; the third argument
is the accumulated list. When the first argument is an empty list, the function yields
the reverse of the accumulated list.

Hint: use pattern matching to figure out whether a tooth is present or not. For a
non-present tooth, add [0] to the accumulated list; for a tooth that is present, create
a list of six numbers by calling generate_tooth/1 with the probability of a good
tooth as its argument.

generate_tooth/1

This generates the list of numbers for a single tooth. It generates a random number
between 0 and 1. If that number is less than the probability of a good tooth, it sets
the “base depth” to 2, otherwise it sets the base depth to 3.

Étude 6-5: Random Numbers; Generating Lists of Lists | 23

The function then calls generate_tooth/3 with the base depth, the number 6, and
an empty list as its arguments.

generate_tooth/3

The first argument is the base depth, the second is the number of items left to
generate, and the third argument is the accumulated list. When the number of items
hits zero, the function is finished. Otherwise, it adds a random integer between -1
and 1 to the base depth, adds it to the accumulated list, and does a recursive call
with one less item.

See a suggested solution in Appendix A.

24 | Chapter 6: Lists

CHAPTER 7

Higher Order Functions and List
Comprehensions

You can learn more about working with higher order functions in
Chapter 9 of Erlang Programming, Section 3.4 of Programming Erlang,
Section 2.7 of Erlang and OTP in Action, and Chapter 6 of Learn You
Some Erlang For Great Good!. List comprehensions are in Chapter 9 of
Erlang Programming, Section 3.6 of Programming Erlang, Section 2.9 of
Erlang and OTP in Action, and Chapter 1 of Learn You Some Erlang For
Great Good!.

Étude 7-1: Simple Higher Order Functions
In calculus, the derivative of a function is “a measure of how a function changes as its
input changes” (Wikipedia). For example, if an object is traveling at a constant velocity,
that velocity is the same from moment to moment, so the derviative is zero. If an object
is falling, its velocity changes a little bit as the object starts falling, and then falls faster
and faster as time goes by.

You can calculate the rate of change of a function by calculating: (F(X + Delta) -
F(X)) / Delta, where Delta is the interval between measurements. As Delta ap‐
proaches zero, you get closer and closer to the true value of the derivative.

Write a module named calculus with a function derivative/2. The first argument is
the function whose derivative you wish to find, and the second argument is the point
at which you are measuring the derivative.

What should you use for a value of Delta? I used 1.0e-10, as that is a small number
that approaches zero.

Here is some sample output.

25

http://en.wikipedia.org/wiki/Derivative

1> c(calculus).
{ok,calculus}
2> F1 = fun(X) -> X * X end.
#Fun<erl_eval.6.82930912>
3> F1(3).
9
4> calculus:derivative(F1, 3).
6.000000496442226
5> calculus:derivative(fun(X) -> 3 * X * X + 2 * X + 1 end, 5).
32.00000264769187
6> calculus:derivative(fun math:sin/1, 0).
1.0

• Line 3 is a test to see if the F1 function works.
• Line 5 shows that you don’t have to assign a function to a variable; you can define

the function in line.
• Line 6 shows how to refer to a function in another module. You start with the word
fun followed by the module:function/arity.

See a suggested solution in Appendix A.

Étude 7-2: List Comprehensions and Pattern Matching
Is it possible to use pattern matching inside a list comprehension? Try it and find out.

Presume you have this list of people’s names, genders, and ages:

People = [{"Federico", $M, 22}, {"Kim", $F, 45}, {"Hansa", $F, 30},
{"Tran", $M, 47}, {"Cathy", $F, 32}, {"Elias", $M, 50}].

Part One
In erl (or in a module, if you prefer), write a list comprehension that creates a list
consisting of the names of all males who are over 40. Use pattern matching to separate
the tuple into three variables, and two guards to do the tests for age and gender.

Part Two
When you use multiple guards in a list comprehension, you get the moral equivalent of
and for each condition you are testing. If you want an or condition, you must test it
explicitly. Write a list comprehension that selects the names of all the people who are
male or over 40. You will need one guard with an or; you may also use orelse.

26 | Chapter 7: Higher Order Functions and List Comprehensions

Because or has higher priority than comparison operators like < and
==, an expression like X > 5 or X < 12 will generate an error, as Erlang
interprets it to mean X > (5 or X) < 12. Use parentheses to force the
correct evaluation: (X > 5) or (X < 12). If you use orelse, which has
a lower priority than the comparison operators, you don’t need the
parentheses, though it doesn’t hurt to have them. Another advantage of
orelse is that it doesn’t do any unnecessary comparisons.

Étude 7-3: Using lists:foldl/3
Add mean/1 and stdv/1 functions to the stats module which you created in Étude
6-2 to calculate the mean and standard deviation for a list of numbers.

1> c(stats).
{ok,stats}
2> stats:mean([7, 2, 9]).
6.0
3> stats:stdv([7, 2, 9]).
3.605551275463989

The formula for the mean is simple; just add up all the numbers and divide by the number
of items in the list (which you may find by using the length/1 function).Use
lists:foldl/3 to calculate the sum of the items in the list.

The following is the algorithm for calculating the standard deviation. Presume that N is
the number of items in the list.

1. Add up all the numbers in the list (call this the sum).
2. Add the squares of the numbers in the list (call this the sum of squares).
3. Multiply N times the sum of squares.
4. Multiply the sum times itself.
5. Subtract the result of step 4 from the result of step 3.
6. Divide the result of step 5 by N * (N - 1).
7. Take the square root of that result.

Thus, if your numbers are 7, 2, and 9, N would be three, and you would do these calcu‐
lations:

• The sum is 7 + 2 + 9, or 18.
• The sum of squares is 49 + 4 + 81, or 134.
• N times the sum of squares is 134 * 3, or 402.
• The sum times itself is 18 * 18, or 324.

Étude 7-3: Using lists:foldl/3 | 27

• 402 - 324 is 78.
• 78 divided by (3 * (3 - 1)) is 78 / 6, or 13.
• The standard deviation is the square root of 13, or 3.606.

In your code, you can do steps three through seven in one arithmetic expression. You’d
have variables in your expression rather than constants, of course.

math:sqrt((3 * 134 - 18 * 18)/(3 * (3 - 1))

Use lists:foldl/3 to calculate the sum and the sum of squares. Bonus points if you
can calculate both of them with one call to lists:foldl/3. Hint: the argument for the
accumulator doesn’t have to be a single number. It can be a list or a tuple.

See a suggested solution in Appendix A.

Étude 7-4: Using lists:split/2
Use erl -man lists to see how the lists:split/2 function works, or try the following
example and see if you can figure it out. Experiment to see what happens if the first
argument is zero.

1> lists:split(4, [110, 220, 330, 440, 550, 660]).
{[110,220,330,440],[550,660]}

Use lists:split/2 and lists:foldl/3 to rewrite the dates:julian/1 function from
Étude 6-3. Hint: you’ll use those functions when calculating the total number of days
up to (but not including) the month in question.

See a suggested solution in Appendix A.

Étude 7-5: Multiple Generators in List Comprehensions
Back to list comprehensions. You can have more than one generator in a list compre‐
hension. Try this in erl:

1> [X * Y || X <- [3, 5, 7], Y <- [2, 4, 6]].
[6,12,18,10,20,30,14,28,42]

Using what you’ve learned from this example, write a module named cards that contains
a function make_deck/0. The function will generate a deck of cards as a list 52 tuples in
this form:

[{"A","Clubs"},
 {"A","Diamonds"},
 {"A","Hearts"},
 {"A","Spades"},
 {2,"Clubs"},
 {2,"Diamonds"},

28 | Chapter 7: Higher Order Functions and List Comprehensions

 {2,"Hearts"},
 {2,"Spades"},
 ...
 {"K", "Clubs"},
 {"K", "Diamonds"},
 {"K", "Hearts"},
 {"K", "Spades"}]

When you run this function, your output will not show the entire list;
it will show something that ends like this. Don’t freak out.

{7,"Clubs"},
{7,"Diamonds"},
{7,[...]},
{7,...},
{...}|...]

If you want to see the full list, use this function.
show_deck(Deck) ->
 lists:foreach(fun(Item) -> io:format("~p~n", [Item]) end, Deck).

See a suggested solution in Appendix A.

Étude 7-6: Explaining an Algorithm
You need a way to shuffle the deck of cards. This is the code for doing a shuffle, taken
from the Literate Programs Wiki.

shuffle(List) -> shuffle(List, []).
shuffle([], Acc) -> Acc;
shuffle(List, Acc) ->
 {Leading, [H | T]} = lists:split(random:uniform(length(List)) - 1, List),
 shuffle(Leading ++ T, [H | Acc]).

Wait a moment. If I’ve just given you the code, what’s the purpose of this étude? I want
you to understand the code. The object of this étude is to write the documentation for
the algorithm. If you aren’t sure what the code does, try adding some io:format state‐
ments to see what is happening. If you’re totally stuck, see the explanation from Literate
Programs site.

See a suggested solution in Appendix A.

Étude 7-6: Explaining an Algorithm | 29

http://en.literateprograms.org/Fisher-YatesShuffle_%28Erlang%29
http://en.literateprograms.org/Fisher-YatesShuffle_%28Erlang%29

CHAPTER 8

Processes

You can learn more about working with simple processes in Chapter 4
of Erlang Programming, Chapter 8 of Programming Erlang, Section 2.13
of Erlang and OTP in Action, and Chapters 10 and 11 of Learn You Some
Erlang For Great Good!.

Étude 8-1: Using Processes to Simulate a Card Game
There is only one étude for this chapter. You’re going to write an Erlang program that
lets the computer play the card game of “War” against itself.

The Art of War
These are the rules of the game as condensed from Wikipedia, adapted to two players,
and simplified further.

Two players each take 26 cards from a shuffled deck. Each person puts her top card face
up on the table. Whoever has the higher value card wins that battle, takes both cards,
and puts them at the bottom of her stack. What happens the if the cards have the same
value? Then the players go to “war.” Each person puts the next two cards from their
stack face down in the pile and a third card face up. High card wins, and the winner
takes all the cards for the bottom of her stack. If the cards match again, the war continues
with another set of three cards from each person. If a person has fewer than three cards
when a war happens, he puts in all his cards.

Repeat this entire procedure until one person has all the cards. That player wins the
game. In this game, aces are considered to have the highest value, and King > Queen >
Jack.

31

http://en.wikipedia.org/wiki/War_%28card_game%29,Wikipedia

War: What is it good for?
Absolutely nothing. Well, almost nothing. War is possibly the most incredibly inane
card game ever invented. It is a great way for children to spend time, and it’s perfect as
an étude because

• it is naturally implementable as processes (players) passing messages (cards)
• there is no strategy involved in the play, thus allowing you to concentrate on the

processes and messages

Pay Now or Pay Later
When you purchase an item, if you pay cash on the spot, you often end up paying less
than if you used credit. If you are cooking a meal, getting all of the ingredients collected
before you start (pay now) is often less stressful than having to stop and go to the grocery
store for items you found out you didn’t have (pay later). In most cases, “pay now” ends
up being less expensive than “pay later,” and that certainly applies to most programming
tasks.

So, before you rush off to start writing code, let me give you a word of advice: Don’t.
Spend some time with paper and pencil, away from the computer, and design this pro‐
gram first. This is a non-trivial program, and the “extra” time you spend planning it
(pay now) will save you a lot of time in debugging and rewriting (pay later). As someone
once told me, “Hours of programming will save you minutes of planning.”

Trust me, programs written at the keyboard look like it, and that is not meant as a
compliment.

Note: This does not mean that you should never use erl or write anything at the key‐
board. If you are wondering about how a specific part of Erlang works and need to write
a small test program to find out, go ahead and do that right away.

Hint: Do your design on paper. Don’t try to keep the whole thing in your head. Draw
diagrams. Sometimes a picture or a storyboard of how the messages should flow will
clarify your thinking. (If your parents ever asked you, “Do I have to draw you a dia‐
gram?”, you may now confidently answer “Yes. Please do that. It really helps.”)

The Design
When I first started planning this, I was going to have just two processes communicating
with one another, as it is in a real game. But let’s think about that. There is a slight
asymmetry between the players. One person usually brings the cards and suggests play‐
ing the game. He shuffles the deck and deals out the cards at the beginning. Once that’s
done, things even out. The game play itself proceeds almost automatically. Neither

32 | Chapter 8: Processes

player is in control of the play, yet both of them are. It seems as if there is an implicit,
almost telepathic communication between the players. Actually, there are no profound
metaphysical issues here. Both players are simultaneously following the same set of
rules. And that’s the point that bothered me—who makes the “decisions” in the program?
I decided to sidestep the issue by introducing a third agent, the “dealer,” who is respon‐
sible for giving the cards to each player at the start of the game. The dealer then can tell
each player to turn over cards, make a decision as to who won, and then tell a particular
player to take cards. This simplifies the message flow considerably and also fits in nicely
with the OTP concepts of supervisors and servers, covered in Chapter 10 of Introducing
Erlang.

In my code, the dealer had to keep track of:

• The process IDs of the players (this was a list)
• The current state of play (see the following)
• Cards received from player 1 for this battle
• Cards received from player 2 for this battle
• The number of players who had given the dealer cards so far (0, 1, or 2)
• The pile of cards in the middle of the table

The dealer spawns the players, and then is in one of the following states. I’m going to
anthropomorphize and use “me” to represent the dealer.
Pre-battle

Tell the players to send me cards. If the pile is empty, then it’s a normal battle; give
me one card each. If the pile isn’t empty, then it’s a war; give me three cards.

Await battle
Wait to receive the cards from the players. Add one to the count every time I get a
player’s cards. When the count reaches two, I’m ready for…

Check Cards
If either player has sent me an empty list for their cards, then that player is out of
cards, so the other player must be the winner.

If I really have cards from both players, compare them. If one player is a winner,
give that player the pile plus the cards currently in play. If the cards match, add the
cards currently in play to the pile, and go back to “Pre-battle” state.

Note that this is my implementation; you may find an entirely different and better way
to write the program.

Étude 8-1: Using Processes to Simulate a Card Game | 33

http://shop.oreilly.com/product/0636920025818.do
http://shop.oreilly.com/product/0636920025818.do

Messages Are Asynchronous
Remember that the order in which a process receives messages may not be the same
order in which they were sent. For example, if players Andrea and Bertram have a battle,
and Andrea wins, you may be tempted to send these messages:

1. Tell Andrea to pick up the two cards that were in the battle.
2. Tell Andrea to send you a card for the next battle.
3. Tell Bertram to send you a card for the next battle.

This works nicely unless Andrea had just thrown her last card down for that battle and
message two arrives before message one. Andrea will report that she is out of cards, thus
losing the game, even though she’s really still in the game with the two cards that she
hasn’t picked up yet.

Hints for Testing
Modify the cards module that you wrote in Étude 7-6 to generate a small deck with,
say, only four cards in two suits. If you try to play with a full deck, the game could go
on for a very, very long time.

Use plenty of calls to io:format/2 to see what your code is really doing.

See a suggested solution in Appendix A.

34 | Chapter 8: Processes

CHAPTER 9

Handling Errors

You can learn more about error handling in Chapters 3 and 17 of Erlang
Programming, Chapter 4 and Section 18.2 of Programming Erlang, Sec‐
tion 2.8 and Chapters 5 and 7 of Erlang and OTP in Action, and Chapters
7 and 12 of Learn You Some Erlang For Great Good!.

Étude 9-1: try and catch
Update the stats module that you wrote in Étude 7-3 so that it will catch errors in the
minimum/1, maximum/1, mean/1 and stdv/1 functions.

Here is some sample output.

1> c(stats).
{ok,stats}
2> stats:minimum([]).
{error,badarg}
3> stats:mean([]).
{error,badarith}
4> stats:mean(["123", 456]).
{error,badarith}
5> stats:stdv([]).
{error,badarith}

See a suggested solution in Appendix A.

Étude 9-2: Logging Errors
Write a module named bank that contains a function account/1. The function takes a
numeric Balance, which gives the current balance in the account in imaginary dollars.

35

The function will repeatedly ask for a transaction (deposit, withdraw, balance inquiry,
or quit). If a deposit or withdrawal, it asks for the amount to deposit or withdraw, and
then does that transaction. If a deposit is more than $10,000, the deposit may be subject
to hold.

Provide output to the customer, and also use error_logger to write to a log file (which,
in this case, will go to your terminal). Choose any form of input prompts and feedback
and logging messages that you deisre. Handle the following situtations:

• Deposits and withdrawals cannot be negative numbers (error)
• Deposits of $10,000 or more might be subject to hold (warning)
• All other transactions are successful (informational)

Use get_number/1 from Étude 5-1 to allow either integer or float input.

Here is sample output. Due to Erlang’s asynchronous nature, the user prompts and
logging are often interleaved in the most inconvenient places.

1> c(bank).
{ok,bank}
2> bank:account(2000).
D)eposit, W)ithdraw, B)alance, Q)uit: D
Amount to deposit: 300
Your new balance is 2300
D)eposit, W)ithdraw, B)alance, Q)uit:
=INFO REPORT==== 26-Jan-2013::06:42:52 ===
Successful deposit 300
W
Amount to withdraw: -200
Withdrawals may not be less than zero.
=ERROR REPORT==== 26-Jan-2013::06:42:56 ===
Negative withdrawal amount -200
D)eposit, W)ithdraw, B)alance, Q)uit: D
Amount to deposit: 15000
Your deposit of $15000 may be subject to hold.
=ERROR REPORT==== 26-Jan-2013::06:43:05 ===
Excessive deposit 15000
Your new balance is 17300
D)eposit, W)ithdraw, B)alance, Q)uit: W
Amount to withdraw: 32767
You cannot withdraw more than your current balance of 17300.

=ERROR REPORT==== 26-Jan-2013::06:43:17 ===
Overdraw 32767 from balance 17300
D)eposit, W)ithdraw, B)alance, Q)uit: W
Amount to withdraw: 150.25
Your new balance is 17149.75

=INFO REPORT==== 26-Jan-2013::06:43:29 ===
Successful withdrawal 150.25

36 | Chapter 9: Handling Errors

D)eposit, W)ithdraw, B)alance, Q)uit: B
D)eposit, W)ithdraw, B)alance, Q)uit:
=INFO REPORT==== 26-Jan-2013::06:43:35 ===
Balance inquiry 17149.75
X
Unknown command X
D)eposit, W)ithdraw, B)alance, Q)uit: Q
true

See a suggested solution in Appendix A.

Étude 9-2: Logging Errors | 37

CHAPTER 10

Storing Structured Data

You can learn more about working with records in Chapter 7 of Erlang
Programming, Section 3.9 of Programming Erlang, Section 2.11 of Erlang
and OTP in Action, and Chapter 9 of Learn You Some Erlang For Great
Good!. ETS and DETS are in Chapter 10 of Erlang Programming, Chap‐
ter 15 of Programming Erlang, Section 2.14 and Chapter 6 of Erlang and
OTP in Action, and Chapter 25 of Learn You Some Erlang For Great
Good!. Mnesia is covered in Chapter 13 of Erlang Programming, Chapter
17 of Programming Erlang, Section 2.7 of Erlang and OTP in Action, and
Chapter 29 of Learn You Some Erlang For Great Good!.

Étude 10-1: Using ETS
In honor of Erlang’s heritage as a language designed for telephony applications, this
étude will set up a small database that keeps track of phone calls.

Part One
Create a file named phone_records.hrl that defines a record with these fields:

• Phone number
• Starting date (month, day, and year)
• Starting time (hours, minutes, and seconds)
• End date (month, day, and year)
• End time (hours, minutes, and seconds)

You may name the record whatever you wish, and you may use any field names you
wish.

39

Part Two
In a module named phone_ets, create an ETS table for phone calls by reading a file.
The function that does this will be named setup/1, and its argument will be the name
of the file containing the data.

Copy the following text into a file named call_data.csv and save the file in the same
directory where you did part one.

650-555-3326,2013-03-10,09:01:47,2013-03-10,09:05:11
415-555-7871,2013-03-10,09:02:20,2013-03-10,09:05:09
729-555-8855,2013-03-10,09:00:55,2013-03-10,09:02:18
729-555-8855,2013-03-10,09:02:57,2013-03-10,09:03:56
213-555-0172,2013-03-10,09:00:59,2013-03-10,09:03:49
946-555-9760,2013-03-10,09:01:20,2013-03-10,09:03:10
301-555-0433,2013-03-10,09:01:44,2013-03-10,09:04:06
301-555-0433,2013-03-10,09:05:17,2013-03-10,09:07:53
301-555-0433,2013-03-10,09:10:05,2013-03-10,09:13:14
729-555-8855,2013-03-10,09:04:40,2013-03-10,09:07:29
213-555-0172,2013-03-10,09:04:26,2013-03-10,09:06:00
213-555-0172,2013-03-10,09:06:59,2013-03-10,09:10:35
946-555-9760,2013-03-10,09:03:36,2013-03-10,09:04:23
838-555-1099,2013-03-10,09:00:43,2013-03-10,09:02:44
650-555-3326,2013-03-10,09:05:48,2013-03-10,09:09:08
838-555-1099,2013-03-10,09:03:43,2013-03-10,09:06:26
838-555-1099,2013-03-10,09:07:54,2013-03-10,09:10:10
301-555-0433,2013-03-10,09:14:07,2013-03-10,09:15:08
415-555-7871,2013-03-10,09:06:15,2013-03-10,09:09:32
650-555-3326,2013-03-10,09:10:12,2013-03-10,09:13:09

So, how do you read a file? Take just the first three lines, and put them into a file called
smallfile.csv, then do the following commands from erl

1> {ResultCode, InputFile} = file:open("smallfile.csv", [read]).
{ok,<0.33.0>}
2> io:get_line(InputFile, "").
"650-555-3326,2013-03-10,09:01:47,2013-03-10,09:05:11\n"
3> io:get_line(InputFile, "").
"415-555-7871,2013-03-10,09:02:20,2013-03-10,09:05:09\n"
4> io:get_line(InputFile, "").
"729-555-8855,2013-03-10,09:00:55,2013-03-10,09:02:18\n"
5> io:get_line(InputFile, "").
eof
6> file:open("nosuchfile", [read]).
{error,enoent}

In the preceding example, lines 1 through 5 show how to open a file and read it. You
can tell you are at the end of file when you get an atom (eof) instead of a list (remember,
Erlang strings are lists). Line 6 shows what happens if you try to open a file that doesn’t
exist.

40 | Chapter 10: Storing Structured Data

The phone number is the key for this data. Since there are multiple calls per phone
number, you will need a bag type table. To get the individual items from each line, use
re:split/2, much as you did in Étude 5-2.

Part Three
Write functions to summarize the number of minutes for a single phone number
(summary/1) or for all phone numbers. (summary/0). These functions return a list of
tuples in the form:

[{phoneNumber1, minutes]},{phoneNumber2, minutes}, …]

You could write your own code to do time and date calculations to figure out the duration
of a phone call, but there’s a limit on how much you really want to re-invent the wheel,
especially with something as complex as calendar calculations. Consider, for example,
a call that begins on 31 December 2013 at 11:58:36 p.m. and ends on 1 January 2014 at
12:14:22 p.m. I don’t even want to think about calls that start on 28 February and go to
the next day.

So, instead, use the calendar:datetime_to_gregorian_seconds/1 function to convert
a date and time to the number of seconds since the year zero. (I swear I am not making
this up.) The argument to this function is a tuple in the form:

{{year, month, day}, {hours, minutes, seconds}} %% for example
{{2013, 07, 14}, {14, 49, 21}}

Round up any number of seconds to the next minute for ech call. Thus, if a call lasts 4
minutes and 6 seconds, round it up to 5 minutes. Hint: add 59 to the total number of
seconds before you div 60.

Now might be the time to rewrite part two so that your dates and times
are stored in the appropriate format. That way, you do the conversion
from string to tuple only once, instead of every time you ask for a sum‐
mary.

Here is the sample output.

1> c(phone_ets).
{ok,phone_ets}
2> phone_ets:setup("call_data.csv").
ok
3> phone_ets:summary("415-555-7871").
[{"415-555-7871",7}]
4> phone_ets:summary().
[{"946-555-9760",3},
 {"415-555-7871",7},
 {"729-555-8855",6},

Étude 10-1: Using ETS | 41

 {"301-555-0433",12},
 {"213-555-0172",9},
 {"650-555-3326",11}]

See a suggested solution in Appendix A.

Étude 10-2: Using Mnesia
I have good news and bad news. First, the bad news. Mnesia is not a relational detabase
management system. If you try to use a query list comprehension to join three tables,
Erlang will complain that joins with more than two tables are not efficient.

Now, the good news. While trying to find a way around this, I discovered something
about query list comprehensions that is really pretty neat, and I’m happy to share it with
you.

In this étude, you will use add a table of customer names and use Mnesia query list
comprehensions to join data from those tables when producing a summary.

Part One
You will need to add a record for customers to phone_records.hrl. Its fields will be:

• Phone Number (this is the key)
• Customer’s last name
• Customer’s first name
• Customer’s middle name
• Rate paid per minute (float)

Again, you may name the record whatever you wish, and you may use any field names
you wish.

Part Two
In a module named phone_mnesia, create the Mnesia tables for the two files. The func‐
tion that does this will be named setup/2, and its arguments will be the names of the
file containing the data.

Use the phone call data from Étude 10-1, and use this data for the customers. Put it in
a file named customer_data.csv or whatever other name you wish.

213-555-0172,Nakamura,Noriko,,0.12
301-555-0433,Ekberg,Erik,Engvald,0.07
415-555-7871,Alvarez,Alberto,Agulto,0.15
650-555-3326,Girard,Georges,Gaston,0.10
729-555-8855,Tran,Truong,Thai,0.09

42 | Chapter 10: Storing Structured Data

838-555-1099,Smith,Samuel,Steven,0.10
946-555-9760,Bobrov,Bogdan,Borisovitch,0.14

You could write two functions that all open a file, read data, split it into fields, write the
data to the Mnesia table, and then keep going until end-of-file. These would share a lot
of common code. Instead, try writing just one function that does the reading, and pass
a higher-order function to it to do the appropriate “split-and-write” operation.

When I solved this problem, my fill_table/5 function took these arguments:

• The name of the table (an atom)
• The name of the file to read (a string)
• The function that adds the data (a higher-order fun)
• The record_info for the field
• The type of table. The phone call data is a bag, the customer data is a set.

Part Three
Write a function named summary/3 that takes a last name, first name, and middle name.
It produces a tuple that contains the person’s phone number, total number of minutes,
and total cost for those minutes.

Here is some sample output.

1> c(phone_mnesia).
{ok,phone_mnesia}
2> phone_mnesia:setup("call_data.csv", "customer_data.csv").
{atomic,ok}
3> phone_mnesia:summary("Smith", "Samuel", "Steven").
[{"838-555-1099",9,0.9}]
4> phone_mnesia:summary("Nakamura", "Noriko", "").
[{"213-555-0172",9,1.08}]

As promised, here’s the good news about query list comprehensions. In this module,
you need to access the customer table to match the phone number to the name when
collecting the calls for the customer. You also need to access the customer table in order
to access the customer’s rate per minute. You don’t want to have to write the specification
for the guards on the customer table twice.

As Introducing Erlang notes, “you can use the qlc:q function to hold a list compre‐
hension and the qlc:e function to process it.” Specifically, the qlc:q function returns
a query handle which you can evaluate and which you can also use in place of a list name
in a query list comprehension.

Here’s an example. Let’s say you have tables of people and their pets. In the pet table,
the owner_id references the id_number of someone in the person table.

Étude 10-2: Using Mnesia | 43

http://shop.oreilly.com/product/0636920025818.do

-record(person,
 {id_number, name, age, gender, city, amount_owed}).
-record(animal,
 {id_number, name, species, gender, owner_id}).

You could do a query like this to find a specific set of people, and then to find information
about their pets:

get_info() ->
 People = mnesia:transaction(
 fun() -> qlc:e(
 qlc:q([P ||
 P <- mnesia:table(person),
 P#person.age >= 21,
 P#person.gender == "M",
 P#person.city == "Podunk"]
)
)
 end
),

 Pets = mnesia:transaction(
 fun() -> qlc:e(
 qlc:q([{A#animal.name, A#animal.species, P#person.name} ||
 P <- mnesia:table(person),
 P#person.age >= 21,
 P#person.gender == "M",
 P#person.city == "Podunk",
 A <- mnesia:table(animal),
 A#animal.owner_id == P#person.id_number])
)
 end
),
 [People, Pets].

To avoid duplicating the list and guards for the person table, you can make a query list
handle for that query and use it again in the animal search. Note that you don’t have to
be in a transacation to create a query handle, but you must be in a transaction to process
it.

get_info_easier() ->

 %% "Pre-process" the list comprehension for finding people

 QHandle = qlc:q([P ||
 P <- mnesia:table(person),
 P#person.age >= 21,
 P#person.gender == "M",
 P#person.city == "Podunk"]
),

 %% Evaluate it to retrieve the people you want

44 | Chapter 10: Storing Structured Data

 People = mnesia:transaction(
 fun() -> qlc:e(QHandle) end
),

 %% And use the handle again when retrieving
 %% information about their pets

 Pets = mnesia:transaction(
 fun() -> qlc:e(
 qlc:q([{A#animal.name, A#animal.species, P#person.name} ||
 P <- QHandle,
 A <- mnesia:table(animal),
 A#animal.owner_id == P#person.id_number])
)
 end
),
 [People, Pets].

See a suggested solution in Appendix A.

Étude 10-2: Using Mnesia | 45

Figure 11-1. Processing a call in gen_server

CHAPTER 11

Getting Started with OTP

In order to help me understand how the gen_server behavior works, I drew the diagram
shown in Figure 11-1.

The client does a gen_server:call(Server, Request). The server will then call the
handle_call/3 function that you have provided in the Module that you told gen_serv
er to use. gen_server will send your module the client’s Request, an identifier telling
who the request is From, and the server’s current State.

Your handle_call/3 function will fulfill the client’s Request and send a {reply, Reply,
NewState} tuple back to the server. It, in turn, will send the Reply back to the client,
and use the NewState to update its state.

In Introducing Erlang and in the next two études, the client is you, using the shell. The
module that handles the client’s call is contained within the same module as the
gen_server framework, but, as the preceding diagram shows, it does not have to be.

47

You can learn more about working with OTP basics in Chapters 11
and 12 of Erlang Programming, Chapters 16 and 18 of Programming
Erlang, Chapter 4 of Erlang and OTP in Action, and Chapters 14
through 20 of Learn You Some Erlang For Great Good!.

Étude 11-1: Get the Weather
In this étude, you will create a weather server using the gen_server OTP behavior.This
server will handle requests using a four-letter weather station identifier and will return
a brief summary of the weather. You may also ask the server for a list of most recently
accessed weather stations.

Here is some sample output:

1> c(weather).
{ok,weather}
2> weather:start_link().
{ok,<0.42.0>}
3> gen_server:call(weather, "KSJC").
{ok,[{location,"San Jose International Airport, CA"},
 {observation_time_rfc822,"Mon, 18 Feb 2013 13:53:00 -0800"},
 {weather,"Overcast"},
 {temperature_string,"51.0 F (10.6 C)"}]}
4> gen_server:call(weather, "KITH").
{ok,[{location,"Ithaca / Tompkins County, NY"},
 {observation_time_rfc822,"Mon, 18 Feb 2013 16:56:00 -0500"},
 {weather,"A Few Clouds"},
 {temperature_string,"29.0 F (-1.6 C)"}]}
5> gen_server:call(weather,"NONE").
{error,404}
6> gen_server:cast(weather, "").
Most recent requests: ["KITH","KSJC"]

Obtaining Weather Data
To retrieve a web page, you must first call inets:start/0; you will want to do this in
your init/1 code. Then, simply call httpc:request(url), where url is a string con‐
taining the URL you want. In this case, you will use the server provided by National
Oceanic and Atmospheric Administration. This server accepts four-letter weather sta‐
tion codes and returns an XML file summarizing the current weather at that station.
You request this data with a URL in the form

http://w1.weather.gov/xml/current_obs/NNNN.xml

where NNNN is the station code.

If the call to httpc:request/1 fails you will get a tuple of the form {error,informa
tion}.

48 | Chapter 11: Getting Started with OTP

http://www.noaa.gov/
http://www.noaa.gov/

If it succeeds, you will get a tuple in the form:

{ok,{{"HTTP/1.1",code,"code message"},
 [{"HTTP header attribute","value"},
 {"Another attribute","another value"}],
 "page contents"}}

where code is the return code (200 means the page was found, 404 means it’s missing,
anything else is some sort of error).

So, let’s say you have successfully retrieved a station’s data. You will then get page content
that contains something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet href="latest_ob.xsl" type="text/xsl"?>
<current_observation version="1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.weather.gov/view/current_observation.xsd">
 <credit>NOAA's National Weather Service</credit>
 <credit_URL>http://weather.gov/</credit_URL>
 
 <suggested_pickup>15 minutes after the hour</suggested_pickup>
 <suggested_pickup_period>60</suggested_pickup_period>
 <location>San Jose International Airport, CA</location>
 <station_id>KSJC</station_id>
 <latitude>37.37</latitude>
 <longitude>-121.93</longitude>
 <observation_time>Last Updated on Feb 18 2013, 11:53 am PST</observation_time>
 <observation_time_rfc822>Mon, 18 Feb 2013 11:53:00 -0800</observation_time_rfc822>
 <weather>Overcast</weather>
 <temperature_string>50.0 F (10.0 C)</temperature_string>
 <temp_f>50.0</temp_f>
 <temp_c>10.0</temp_c>
 <relative_humidity>77</relative_humidity>
 <wind_string>Calm</wind_string>
 <wind_dir>North</wind_dir>
 <wind_degrees>0</wind_degrees>
 <wind_mph>0.0</wind_mph>
 <wind_kt>0</wind_kt>
 <pressure_string>1017.7 mb</pressure_string>
 <pressure_mb>1017.7</pressure_mb>
 <pressure_in>30.05</pressure_in>
 <dewpoint_string>43.0 F (6.1 C)</dewpoint_string>
 <dewpoint_f>43.0</dewpoint_f>
 <dewpoint_c>6.1</dewpoint_c>
 <visibility_mi>10.00</visibility_mi>
 <icon_url_base>http://forecast.weather.gov/images/wtf/small/</icon_url_base>
 <two_day_history_url>http://www.weather.gov/data/obhistory/KSJC.html</two_day_history_url>

Étude 11-1: Get the Weather | 49

 <icon_url_name>ovc.png</icon_url_name>
 <ob_url>http://www.weather.gov/data/METAR/KSJC.1.txt</ob_url>
 <disclaimer_url>http://weather.gov/disclaimer.html</disclaimer_url>
 <copyright_url>http://weather.gov/disclaimer.html</copyright_url>
 <privacy_policy_url>http://weather.gov/notice.html</privacy_policy_url>
</current_observation>

Parsing the Data
You now have to parse that XML data. Luckily, Erlang comes with the
xmerl_scan:string/1 function, which will parse your XML into a rather imposing-
looking tuple. Here is what it looks like for a very simple bit of XML:

1> XML = "<pets><cat>Misha</cat><dog>Lady</dog></pets>".
"<pets><cat>Misha</cat><dog>Lady</dog></pets>"
3> Result = xmerl_scan:string(XML).
{{xmlElement,pets,pets,[],
 {xmlNamespace,[],[]},
 [],1,[],
 [{xmlElement,cat,cat,[],
 {xmlNamespace,[],[]},
 [{pets,1}],
 1,[],
 [{xmlText,[{cat,1},{pets,1}],1,[],"Misha",text}],
 [],
 "/home/david/etudes/code/ch11-01",
 undeclared},
 {xmlElement,dog,dog,[],
 {xmlNamespace,[],[]},
 [{pets,1}],
 2,[],
 [{xmlText,[{dog,2},{pets,1}],1,[],"Lady",text}],
 [],undefined,undeclared}],
 [],
 "/home/david/etudes/code/ch11-01",
 undeclared},
 []}

Ye cats! How you do work with that?! First, put this at the top of your code so that you
can use xmerl’s record definitions:

-include_lib("xmerl/include/xmerl.hrl").

You can see all the details of the records at http://erlang.googlecode.com/svn-history/r160/
trunk/lib/xmerl/include/xmerl.hrl

Then, copy and paste this into your code. You could figure it out on your own, but that
would take away from setting up the server, which is the whole point of this étude.

%% Take raw XML data and return a set of {key, value} tuples

analyze_info(WebData) ->

50 | Chapter 11: Getting Started with OTP

http://erlang.googlecode.com/svn-history/r160/trunk/lib/xmerl/include/xmerl.hrl
http://erlang.googlecode.com/svn-history/r160/trunk/lib/xmerl/include/xmerl.hrl

 %% list of fields that you want to extract
 ToFind = [location, observation_time_rfc822, weather, temperature_string],

 %% get just the parsed data from the XML parse result
 Parsed = element(1, xmerl_scan:string(WebData)),

 %% This is the list of all children under <current_observation>
 Children = Parsed#xmlElement.content,

 %% Find only XML elements and extract their names and their text content.
 %% You need the guard so that you don't process the newlines in the
 %% data (they are XML text descendants of the root element).
 ElementList = [{El#xmlElement.name, extract_text(El#xmlElement.content)}
 || El <- Children, element(1, El) == xmlElement],

 %% ElementList is now a keymap; get the data you want from it.
 lists:map(fun(Item) -> lists:keyfind(Item, 1, ElementList) end, ToFind).

%% Given the parsed content of an XML element, return its first node value
%% (if it's a text node); otherwise return the empty string.

extract_text(Content) ->
 Item = hd(Content),
 case element(1, Item) of
 xmlText -> Item#xmlText.value;
 _ -> ""
 end.

Set up a Supervisor
Finally, you can easily crash the server by handing it a number instead of a string for
the station code. Set up a supervisor to restart the server when it crashes.

1> c(weather_sup).
{ok,weather_sup}
2> {ok, Pid} = weather_sup:start_link().
{ok,<0.38.0>}
3> unlink(Pid).
true
4> gen_server:call(weather, "KGAI").
{ok,[{location,"Montgomery County Airpark, MD"},
 {observation_time_rfc822,"Mon, 18 Feb 2013 17:55:00 -0500"},
 {weather,"Fair"},
 {temperature_string,"37.0 F (3.0 C)"}]}
5> gen_server:call(weather, 1234).
** exception exit: {{badarg,[{erlang,'++',[1234,".xml"],[]},
 {weather,get_weather,2,[{file,"weather.erl"},{line,43}]},
 {weather,handle_call,3,[{file,"weather.erl"},{line,23}]},
 {gen_server,handle_msg,5,
 [{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,

Étude 11-1: Get the Weather | 51

 [{file,"proc_lib.erl"},{line,227}]}]},
 {gen_server,call,[weather,1234]}}
 in function gen_server:call/2 (gen_server.erl, line 180)

=INFO REPORT==== 18-Feb-2013::15:57:19 ===
 application: inets
 exited: stopped
 type: temporary
6>
=ERROR REPORT==== 18-Feb-2013::15:57:19 ===
** Generic server weather terminating
** Last message in was 1234
** When Server state == ["KGAI"]
** Reason for termination ==
** {badarg,[{erlang,'++',[1234,".xml"],[]},
 {weather,get_weather,2,[{file,"weather.erl"},{line,43}]},
 {weather,handle_call,3,[{file,"weather.erl"},{line,23}]},
 {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,[{file,"proc_lib.erl"},{line,227}]}]}

6> gen_server:call(weather, "KCMI").
{ok,[{location,"Champaign / Urbana, University of Illinois-Willard, IL"},
 {observation_time_rfc822,"Mon, 18 Feb 2013 16:53:00 -0600"},
 {weather,"Overcast and Breezy"},
 {temperature_string,"47.0 F (8.3 C)"}]}

See a suggested solution in Appendix A.

Étude 11-2: Wrapper Functions
In the previous étude, you made calls directly to gen_server. This is great for experi‐
mentation, but in a real application, you do not want other modules to have to know
the exact format of the arguments you gave to gen_server:call/2 or gen_serv
er:cast/2. Instead, you provide a “wrapper” function that makes the actual call. In this
way, you can change the internal format of your server requests while the interface you
present to other users remains unchanged.

In this étude, then, you will provide two wrapper functions report/1 and recent/0.
The report/1 function will take a station name as its argument and do the appropriate
gen_server:call; the recent/0 function will do an appropriate gen_server:cast.
Everything else in your code will remain unchanged. You will, of course, have to add
report/1 and recent/0 to the -export list.

Here’s some sample output.

1> c(weather).
{ok,weather}
2> weather:start_link().
{ok,<0.45.0>}
3> weather:report("KSJC").

52 | Chapter 11: Getting Started with OTP

{ok,[{location,"San Jose International Airport, CA"},
 {observation_time_rfc822,"Tue, 26 Feb 2013 17:53:00 -0800"},
 {weather,"Fair"},
 {temperature_string,"56.0 F (13.3 C)"}]}
4> weather:report("XYXY").
{error,404}
5> weather:report("KCMI").
{ok,[{location,"Champaign / Urbana, University of Illinois-Willard, IL"},
 {observation_time_rfc822,"Tue, 26 Feb 2013 19:53:00 -0600"},
 {weather,"Light Rain Fog/Mist"},
 {temperature_string,"34.0 F (1.1 C)"}]}
6> weather:recent().
Most recent requests: ["KCMI","KSJC"]

See a suggested solution in Appendix A.

Étude 11-3: Independent Server and Client
In the previous études, the client and server have been running in the same shell. In this
étude, you will make the server available to clients running in other shells.

To make a node available to other nodes, you need to name the node by using the -
name option when starting erl. It looks like this:

michele@localhost $ erl -name serverNode
Erlang R15B02 (erts-5.9.2) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.2 (abort with ^G)
(serverNode@localhost.gateway.2wire.net)1>

This is a long name. You can also set up a node with a short name by using the -sname
option:

michele@localhost $ erl -sname serverNode
Erlang R15B02 (erts-5.9.2) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.2 (abort with ^G)
(serverNode@localhost)1>

If you set up a node in this way, any other node can connect to it and
do any shell commands at all. In order to prevent this, you may use the
-setcookie Cookie when starting erl. Then, only nodes that have the
same Cookie (which is an atom) can connect to your node.

To connect to a node, use the net_adm:ping/1 function, and give it the name of the
server you want to connect to as its argument. If you connect succesfully, the function
will return the atom pong; otherwise, it will return pang.

Here is an example. First, start a shell with a (very bad) secret cookie:

Étude 11-3: Independent Server and Client | 53

michele@localhost $ erl -sname serverNode -setcookie chocolateChip
Erlang R15B02 (erts-5.9.2) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.2 (abort with ^G)
(serverNode@localhost)1>

Now, open another terminal window, start a shell with a different cookie, and try to
connect to the server node. I have purposely used a different user name to show that
this works too.

steve@localhost $ erl -sname clientNode -setcookie oatmealRaisin
Erlang R15B02 (erts-5.9.2) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.2 (abort with ^G)
(clientNode@localhost)1> net_adm:ping(serverNode@localhost).
pang

The server node will detect this attempt and let you know about it:

=ERROR REPORT==== 28-Feb-2013::22:41:38 ===
** Connection attempt from disallowed node clientNode@localhost **

Quit the client shell, and restart it with a matching cookie, and all will be well.

steve@localhost erltest $ erl -sname clientNode -setcookie chocolateChip
Erlang R15B02 (erts-5.9.2) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.2 (abort with ^G)
(clientNode@localhost)1> net_adm:ping(serverNode@localhost).
pong

To make your weather report server available to other nodes, you need to do these things:

• In the start_link/0 convenience method, set the first argument to gen_serv
er:start_link/4 to {global, ?SERVER} instead of {local, ?SERVER}

• In calls to gen_server:call/2 and gen_server:cast/2, replace the module name
weather with {global, weather}

• Add a connect/1 function that takes the server node name as its argument. This
function will use net_adm:ping/1 to attempt to contact the server. It provides ap‐
propriate feedback when it succeeds or fails.

Here is what it looks like when one user starts the server in a shell.

michele@localhost $ erl -sname serverNode -setcookie meteorology
Erlang R15B02 (erts-5.9.2) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.2 (abort with ^G)
(serverNode@localhost)1> weather:start_link().
{ok,<0.39.0>}

And here’s another user in a different shell, calling upon the server.

54 | Chapter 11: Getting Started with OTP

steve@localhost $ erl -sname clientNode -setcookie meteorology
Erlang R15B02 (erts-5.9.2) [source] [smp:2:2] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.2 (abort with ^G)
(clientNode@localhost)1> weather:connect(serverNode@localhost).
Connected to server.
ok
(clientNode@localhost)2> weather:report("KSJC").
{ok,[{location,"San Jose International Airport, CA"},
 {observation_time_rfc822,"Thu, 28 Feb 2013 21:53:00 -0800"},
 {weather,"Fair"},
 {temperature_string,"52.0 F (11.1 C)"}]}
(clientNode@localhost)3> weather:report("KITH").
{ok,[{location,"Ithaca / Tompkins County, NY"},
 {observation_time_rfc822,"Fri, 01 Mar 2013 00:56:00 -0500"},
 {weather,"Light Snow"},
 {temperature_string,"31.0 F (-0.5 C)"}]}
(clientNode@localhost)4> weather:recent().
ok

Whoa! What happened to the output from that last call? The problem is that the weath
er:recent/0 call does an io:format/3 call; that output will go to the server shell, since
the server is running that code, not the client. Bonus points if you fix this problem by
changing weather:recent/0 from using gen_server:cast/2 to use gen_server:call/
2 instead to return the recently reported weather stations as its reply.

There’s one more question that went through my mind after I implemented my solution:
how did I know that the client was calling the weather code running on the server and
not the weather code in its own shell? It was easy to find out: I stopped the server.

(serverNode@localhost)2>
User switch command
 --> q
michele@localhost $

Then I had the client try to get a weather report.

(clientNode@localhost)5> weather:report("KSJC").
** exception exit: {noproc,{gen_server,call,[{global,weather},"KSJC"]}}
 in function gen_server:call/2 (gen_server.erl, line 180)

The fact that it failed told me that yes, indeed, the client was getting its information from
the server.

See a suggested solution in Appendix A.

Étude 11-4: Chat Room
In the previous études, the client simply made a call to the server, and didn’t do any
processing of its own. In this étude, you will create a “chat room” with a chat server and
multiple clients, much as you see in Server with multiple clients.

Étude 11-4: Chat Room | 55

Server with multiple cli‐

ents.

The interesting part of this program is that the client will also be a gen_server, as shown
in Client as a gen_server.

Client as a gen_server.

Up until now, you have been using a module name as the first argument to gen_serv
er:call/2, and in the previous étude, you used net_adm:ping/1 to connect to a server.

In this étude, you won’t need net_adm:ping/1. Instead, you will use a tuple of the form
{Module, Node} to directly connect to the node you want. So, for example, if you want
to make a call to a module named chatroom on a node named lobby@localhost, you
would do something like this:

gen_server:call({chatroom, lobby@localhost}, Request)

This means you won’t need to connect with net_adm:ping/1.

Here is my design for the solution. You, of course, may come up with an entirely different
and better design.

My solution has two modules, both of which use the gen_server behavior.

56 | Chapter 11: Getting Started with OTP

mailto:lobby@localhost

The chatroom Module
The first module, chatroom, will keep as its state a list of tuples, one tuple for each person
in the chat. Each tuple has the format {{UserName, UserServer}, Pid}. The Pid is the
one that gen_server:call receives in the From parameter; it’s guaranteed to be unique
for each person in chat.

The handle_call/3 function will accept the following requests.
{login, UserName, ServerName}

Adds the user name, server name, and Pid (which is in the From parameter) to the
server’s state. Don’t allow a duplicate user name from the same server.

logout

Removes the user from the state list.

{say, Text}

Sends the given Text to all the other users in the chat room. Use gen_server:cast/
2 to send the message.

users

Returns the list of names and servers for all people currently in the chat room.

{who, Person, ServerName}

Return the profile of the given person/server. (This is “extra credit”; see the follow‐
ing details about the person module). It works by calling the person module at
ServerName and giving it a get_profile request.

The person Module
The other module, person, has a start_link/1 function; the argument is the node name
of the chat room server. This will be passed on to the init/1 function. This is stored in
the server’s state. I did this because many other calls need to know the chat room server’s
name, and keeping it in the person’s state seemed a reasonable choice.

For extra credit, the state will also include the person’s profile, which is a list of {Key,
Value} tuples.

The handle_call/3 takes care of these requests:
get_chat_node

Returns the chat node name that’s stored in the server’s state. (Almost all of the
wrapper functions to be described in the following section will need the chat node
name.)

get_profile

Returns the profile that’s stored in the server’s state (extra credit)

Étude 11-4: Chat Room | 57

{profile, Key, Value}

If the profile already contains the key, replace it with the given value. Otherwise,
add the key and value to the profile. Hint: use lists:keymember/3 and lists:key
replace/4. (extra credit)

Because the chat room server uses gen_server:cast/2 to send messages to the people
in the room, your handle_cast/3 function will receive messages sent from other users
in this form:

{message, {FromUser, FromServer}, Text}

Wrapper Functions for the person module
get_chat_node()

A convenience function to get the name of the chat host node by doing gen_serv
er:call(person, get_chat_node)

login(UserName)

Calls the chat room server with a {login, UserName} request. If the user name is an
atom, use atom_to_list/1 to convert it to a string.

logout()

Calls the chat room server with a logout request. As you saw in the description of
chatroom, the server uses the process ID to figure out who should be logged out.

say(Text)

Calls the chat server with a {say, Text} request.

users()

Calls the chat server with a users request.

who(UserName, UserNode)

Calls the chat server with a {who, UserName, UserNode} request to see the profile
of the given person. (extra credit)

profile(Key, Value)

A convenience method that calls the person module with a {profile, Key, Val
ue} request. (extra credit)

Putting it All Together
Here is what the chat room server looks like. The lines beginning with Recipient
list: are debug output. I have gotten rid of the startup lines from the erl command.

erl -sname lobby

(lobby@localhost)1> chatroom:start_link().

58 | Chapter 11: Getting Started with OTP

{ok,<0.39.0>}
Recipient list: [{"Steve",sales@localhost},{"Michele",marketing@localhost}]
Recipient list: [{"David",engineering@localhost},
 {"Michele",marketing@localhost}]
Recipient list: [{"David",engineering@localhost},{"Steve",sales@localhost}]
Recipient list: [{"David",engineering@localhost},
 {"Michele",marketing@localhost}]

And here are three other servers talking to one another and setting profile information.

erl -sname sales

(sales@localhost)1> person:start_link(lobby@localhost).
Chat node is: lobby@localhost
{ok,<0.39.0>}
(sales@localhost)2> person:login("Steve").
{ok,"Logged in."}
(sales@localhost)3> person:profile(city, "Chicago").
{ok,[{city,"Chicago"}]}
David (engineering@localhost) says: "Hi, everyone."
(sales@localhost)4> person:say("How's things in Toronto, David?").
ok
Michele (marketing@localhost) says: "New product launch is next week."
(sales@localhost)5> person:say("oops, gotta run.").
ok
(sales@localhost)6> person:logout().
ok

erl -sname engineering

(engineering@localhost)1> person:start_link(lobby@localhost).
Chat node is: lobby@localhost
{ok,<0.39.0>}
(engineering@localhost)2> person:login("David").
{ok,"Logged in."}
(engineering@localhost)3> person:profile(city, "Toronto").
{ok,[{city,"Toronto"}]}
(engineering@localhost)4> person:profile(department, "New Products").
{ok,[{department,"New Products"},{city,"Toronto"}]}
(engineering@localhost)5> person:say("Hi, everyone.").
ok
Steve (sales@localhost) says: "How's things in Toronto, David?"
Michele (marketing@localhost) says: "New product launch is next week."
(engineering@localhost)6> person:users().
[{"David",engineering@localhost},
 {"Steve",sales@localhost},
 {"Michele",marketing@localhost}]
Steve (sales@localhost) says: "oops, gotta run."

erl -sname marketing

(marketing@localhost)1> person:start_link(lobby@localhost).
Chat node is: lobby@localhost
{ok,<0.39.0>}

Étude 11-4: Chat Room | 59

(marketing@localhost)2> person:login("Michele").
{ok,"Logged in."}
(marketing@localhost)3> person:profile(city, "San Jose").
{ok,[{city,"San Jose"}]}
David (engineering@localhost) says: "Hi, everyone."
Steve (sales@localhost) says: "How's things in Toronto, David?"
(marketing@localhost)4> person:say("New product launch is next week.").
ok
Steve (sales@localhost) says: "oops, gotta run."
(marketing@localhost)5> person:users().
[{"David",engineering@localhost},
 {"Michele",marketing@localhost}]

See a suggested solution in Appendix A.

60 | Chapter 11: Getting Started with OTP

APPENDIX A

Solutions to Études

Here are the solutions that I came up with for the études in this book. Since I was learning
Erlang as I wrote them, you may expect some of the code to be naïve in the extreme.

Solution 2-1
Here is a suggested solution for Étude 2-1.

geom.erl
-module(geom).
-export([area/2]).

area(L,W) -> L * W.

Solution 2-2
Here is a suggested solution for Étude 2-2.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/2]).

%% @doc Calculates the area of a rectangle, given the
%% length and width. Returns the product
%% of its arguments.

61

-spec(area(number(),number()) -> number()).

area(L,W) -> L * W.

Solution 2-3
Here is a suggested solution for Étude 2-3.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/2]).

%% @doc Calculates the area of a rectangle, given the
%% length and width. Returns the product
%% of its arguments.

-spec(area(number(),number()) -> number()).

area(L,W) -> L * W.

Solution 3-1
Here is a suggested solution for Étude 3-1.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/3]).

%% @doc Calculates the area of a shape, given the
%% shape and two of the dimensions. Returns the product
%% of its arguments for a rectangle, one half the
%% product of the arguments for a triangle, and
%% math:pi times the product of the arguments for
%% an ellipse.

-spec(area(atom(), number(),number()) -> number()).

area(rectangle, L,W) -> L * W;

62 | Appendix A: Solutions to Études

area(triangle, B, H) -> (B * H) / 2.0;

area(ellipse, A, B) -> math:pi() * A * B.

Solution 3-2
Here is a suggested solution for Étude 3-2.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/3]).

%% @doc Calculates the area of a shape, given the
%% shape and two of the dimensions. Returns the product
%% of its arguments for a rectangle, one half the
%% product of the arguments for a triangle, and
%% math:pi times the product of the arguments for
%% an ellipse. Ensure that both arguments are greater than
%% or equal to zero.

-spec(area(atom(), number(),number()) -> number()).

area(rectangle, L,W) when L >=0, W >= 0 -> L * W;

area(triangle, B, H) when B>= 0, H >= 0 -> (B * H) / 2.0;

area(ellipse, A, B) when A >= 0, B >= 0 -> math:pi() * A * B.

Solution 3-3
Here is a suggested solution for Étude 3-3.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/3]).

%% @doc Calculates the area of a shape, given the

Solution 3-2 | 63

%% shape and two of the dimensions. Returns the product
%% of its arguments for a rectangle, one half the
%% product of the arguments for a triangle, and
%% math:pi times the product of the arguments for
%% an ellipse. Invalid data returns zero.

-spec(area(atom(), number(),number()) -> number()).

area(rectangle, L,W) when L >=0, W >= 0 -> L * W;

area(triangle, B, H) when B>= 0, H >= 0 -> (B * H) / 2.0;

area(ellipse, A, B) when A >= 0, B >= 0 -> math:pi() * A * B;

area(_, _, _) -> 0.

Solution 3-4
Here is a suggested solution for Étude 3-4.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/1]).

%% @doc Calculates the area of a shape, given a tuple
%% containing a shape and two of the dimensions.
%% Works by calling a private function.

-spec(area({atom(), number(),number()}) -> number()).

area({Shape, Dim1, Dim2}) -> area(Shape, Dim1, Dim2).

%% @doc Returns the product of its arguments for a rectangle,
%% one half the product of the arguments for a triangle,
%% and math:pi times the product of the arguments for
%% an ellipse. Invalid data returns zero.

-spec(area(atom(), number(),number()) -> number()).

area(rectangle, L,W) when L >=0, W >= 0 -> L * W;

area(triangle, B, H) when B>= 0, H >= 0 -> (B * H) / 2.0;

area(ellipse, A, B) when A >= 0, B >= 0 -> math:pi() * A * B;

64 | Appendix A: Solutions to Études

area(_, _, _) -> 0.

Solution 4-1
Here is a suggested solution for Étude 4-1.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/3]).

%% @doc Calculates the area of a shape, given the
%% shape and two of the dimensions. Returns the product
%% of its arguments for a rectangle, one half the
%% product of the arguments for a triangle, and
%% math:pi times the product of the arguments for
%% an ellipse.

-spec(area(atom(), number(),number()) -> number()).

area(Shape, A, B) when A >= 0, B >= 0 ->
 case Shape of
 rectangle -> A * B;
 triangle -> (A * B) / 2.0;
 ellipse -> math:pi() * A * B
 end.

Solution 4-2
Here is a suggested solution for Étude 4-2.

dijkstra.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Recursive function for calculating GCD
%% of two numbers using Dijkstra's algorithm.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(dijkstra).
-export([gcd/2]).

%% @doc Calculates the greatest common divisor of two
%% integers. Uses Dijkstra's algorithm, which does not

Solution 4-1 | 65

%% require any division.

-spec(gcd(number(), number()) -> number()).

gcd(M, N) ->
 if
 M == N -> M;
 M > N -> gcd(M - N, N);
 true -> gcd(M, N - M)
 end.

Solution 4-3
Here is a suggested solution for Étude 4-3.

powers.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for raising a number to an integer power
%% and finding the Nth root of a number using Newton's method.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(powers).
-export([raise/2]).

%% @doc Raise a number X to an integer power N.
%% Any number to the power 0 equals 1.
%% Any number to the power 1 is that number itself.
%% When N is positive, X^N is equal to X times X^(N - 1)
%% When N is negative, X^N is equal to 1.0 / X^N

-spec(raise(number(), integer()) -> number()).

raise(_, 0) -> 1;

raise(X, 1) -> X;

raise(X, N) when N > 0 -> X * raise(X, N - 1);

raise(X, N) when N < 0 -> 1 / raise(X, -N).

powers_traced.erl
This code contains output that lets you see the progress of the recursion.

%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for raising a number to an integer power
%% and finding the Nth root of a number using Newton's method.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

66 | Appendix A: Solutions to Études

-module(powers_traced).
-export([raise/2]).

%% @doc Raise a number X to an integer power N.
%% Any number to the power 0 equals 1.
%% Any number to the power 1 is that number itself.
%% When N is positive, X^N is equal to X times X^(N - 1)
%% When N is negative, X^N is equal to 1.0 / X^N

-spec(raise(number(), integer()) -> number()).

raise(_, 0) -> 1;

raise(X, 1) -> X;

raise(X, N) when N > 0 ->
 io:format("Enter X: ~p, N: ~p~n", [X, N]),
 Result = X * raise(X, N - 1),
 io:format("Result is ~p~n", [Result]),
 Result;

raise(X, N) when N < 0 -> 1 / raise(X, -N).

Solution 4-4
Here is a suggested solution for Étude 4-4.

powers.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for raising a number to an integer power.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(powers).
-export([raise/2]).

%% @doc Raise a number X to an integer power N.
%% Any number to the power 0 equals 1.
%% Any number to the power 1 is that number itself.
%% When N is positive, X^N is equal to X times X^(N - 1)
%% When N is negative, X^N is equal to 1.0 / X^N

-spec(raise(number(), integer()) -> number()).

raise(_, 0) -> 1;

raise(X, N) when N > 0 ->
 raise(X, N, 1);

Solution 4-4 | 67

raise(X, N) when N < 0 -> 1 / raise(X, -N).

%% @doc Helper function to raise X to N by passing an Accumulator
%% from call to call.
%% When N is 0, return the value of the Accumulator;
%% otherwise return raise(X, N - 1, X * Accumulator)

raise(_, 0, Accumulator) -> Accumulator;

raise(X, N, Accumulator) ->
 raise(X, N-1, X * Accumulator).

powers_traced.erl
This code contains output that lets you see the progress of the recursion.

%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for raising a number to an integer power.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(powers_traced).
-export([raise/2]).

%% @doc Raise a number X to an integer power N.
%% Any number to the power 0 equals 1.
%% Any number to the power 1 is that number itself.
%% When N is negative, X^N is equal to 1.0 / X^N
%% When N is positive, call raise/3 with 1 as the accumulator.

-spec(raise(number(), integer()) -> number()).

raise(_, 0) -> 1;

raise(X, N) when N > 0 ->
 raise(X, N, 1);

raise(X, N) when N < 0 -> 1 / raise(X, -N).

%% @doc Helper function to raise X to N by passing an Accumulator
%% from call to call.
%% When N is 0, return the value of the Accumulator;
%% otherwise return raise(X, N - 1, X * Accumulator)

-spec(raise(number(), integer(), number()) -> number()).

raise(_, 0, Accumulator) ->
 io:format("N equals 0."),
 Result = Accumulator,
 io:format("Result is ~p~n", [Result]),
 Result;

68 | Appendix A: Solutions to Études

raise(X, N, Accumulator) ->
 io:format("Enter: X is ~p, N is ~p, Accumulator is ~p~n",
 [X, N, Accumulator]),
 Result = raise(X, N-1, X * Accumulator),
 io:format("Result is ~p~n", [Result]),
 Result.

Solution 4-5
Here is a suggested solution for Étude 4-5.

powers.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for raising a number to an integer power
%% and finding the Nth root of a number using Newton's method.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(powers).
-export([nth_root/2, raise/2]).

%% @doc Find the nth root of a given number.

-spec(nth_root(number(), integer()) -> number()).

nth_root(X, N) ->
 A = X / 2.0,
 nth_root(X, N, A).

%% @doc Helper function to find an nth_root by passing
%% an approximation from one call to the next.
%% If the difference between current and next approximations
%% is less than 1.0e-8, return the next approximation; otherwise return
%% nth_root(X, N, NextApproximation).

nth_root(X, N, A) ->
 io:format("Current guess is ~p~n", [A]), %% see the guesses converge
 F = raise(A, N) - X,
 Fprime = N * raise(A, N - 1),
 Next = A - F / Fprime,
 Change = abs(Next - A),
 if
 Change < 1.0e-8 -> Next;
 true -> nth_root(X, N, Next)
 end.

%% @doc Raise a number X to an integer power N.
%% Any number to the power 0 equals 1.
%% Any number to the power 1 is that number itself.
%% When N is positive, X^N is equal to X times X^(N - 1)

Solution 4-5 | 69

%% When N is negative, X^N is equal to 1.0 / X^N

-spec(raise(number(), integer()) -> number()).

raise(_, 0) -> 1;

raise(X, N) when N > 0 ->
 raise(X, N, 1);

raise(X, N) when N < 0 -> 1 / raise(X, -N).

%% @doc Helper function to raise X to N by passing an Accumulator
%% from call to call.
%% When N is 0, return the value of the Accumulator;
%% otherwise return raise(X, N - 1, X * Accumulator)

raise(_, 0, Accumulator) -> Accumulator;

raise(X, N, Accumulator) ->
 raise(X, N-1, X * Accumulator).

Solution 5-1
Here is a suggested solution for Étude 5-1.

geom.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating areas of geometric shapes.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(geom).
-export([area/3]).

%% @doc Calculates the area of a shape, given the
%% shape and two of the dimensions. Returns the product
%% of its arguments for a rectangle, one half the
%% product of the arguments for a triangle, and
%% math:pi times the product of the arguments for
%% an ellipse.

-spec(area(atom(), number(), number()) -> number()).

area(Shape, A, B) when A >= 0, B >= 0 ->
 case Shape of
 rectangle -> A * B;
 triangle -> (A * B) / 2.0;
 ellipse -> math:pi() * A * B
 end.

70 | Appendix A: Solutions to Études

ask_area.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions to calculate areas of shape given user input.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(ask_area).
-export([area/0]).

%% @doc Requests a character for the name of a shape,
%% numbers for its dimensions, and calculates shape's area.
%% The characters are R for rectangle, T for triangle,
%% and E for ellipse. Input is allowed in either upper
%% or lower case.

-spec(area() -> number()).

area() ->
 Answer = io:get_line("R)ectangle, T)riangle, or E)llipse > "),
 Shape = char_to_shape(hd(Answer)),
 case Shape of
 rectangle -> Numbers = get_dimensions("width", "height");
 triangle -> Numbers = get_dimensions("base", "height");
 ellipse -> Numbers = get_dimensions("major axis", "minor axis");
 unknown -> Numbers = {error, "Unknown shape " ++ [hd(Answer)]}
 end,

 Area = calculate(Shape, element(1, Numbers), element(2, Numbers)),
 Area.

%% @doc Given a character, returns an atom representing the
%% specified shape (or the atom unknown if a bad character is given).

-spec(char_to_shape(char()) -> atom()).

char_to_shape(Char) ->
 case Char of
 $R -> rectangle;
 $r -> rectangle;
 $T -> triangle;
 $t -> triangle;
 $E -> ellipse;
 $e -> ellipse;
 _ -> unknown
 end.

%% @doc Present a prompt and get a number from the
%% user. Allow either integers or floats.

-spec(get_number(string()) -> number()).

Solution 5-1 | 71

get_number(Prompt) ->
 Str = io:get_line("Enter " ++ Prompt ++ " > "),
 {Test, _} = string:to_float(Str),
 case Test of
 error -> {N, _} = string:to_integer(Str);
 _ -> N = Test
 end,
 N.

%% @doc Get dimensions for a shape. Input are the two prompts,
%% output is a tuple {Dimension1, Dimension2}.

-spec(get_dimensions(string(), string()) -> {number(), number()}).

get_dimensions(Prompt1, Prompt2) ->
 N1 = get_number(Prompt1),
 N2 = get_number(Prompt2),
 {N1, N2}.

%% @doc Calculate area of a shape, given its shape and dimensions.
%% Handle errors appropriately.

-spec(calculate(atom(), number(), number()) -> number()).

calculate(unknown, _, Err) -> io:format("~s~n", [Err]);
calculate(_, error, _) -> io:format("Error in first number.~n");
calculate(_, _, error) -> io:format("Error in second number.~n");
calculate(_, A, B) when A < 0; B < 0 ->
 io:format("Both numbers must be greater than or equal to zero~n");
calculate(Shape, A, B) -> geom:area(Shape, A, B).

Solution 5-2
Here is a suggested solution for Étude 5-2.

dates.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for splitting a date into a list of
%% year-month-day.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(dates).
-export([date_parts/1]).

%% @doc Takes a string in ISO date format (yyyy-mm-dd) and
%% returns a list of integers in form [year, month, day].

-spec(date_parts(list()) -> list()).

72 | Appendix A: Solutions to Études

date_parts(DateStr) ->
 [YStr, MStr, DStr] = re:split(DateStr, "-", [{return, list}]),
 [element(1, string:to_integer(YStr)),
 element(1, string:to_integer(MStr)),
 element(1, string:to_integer(DStr))].

Solution 6-1
Here is a suggested solution for Étude 6-1.

stats.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating basic statistics on a list of numbers.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(stats).
-export([minimum/1]).

%% @doc Returns the minimum item in a list of numbers. Fails when given
%% an empty list, as there's nothing reasonable to return.

-spec(minimum(list(number())) -> number()).

minimum(NumberList) ->
 minimum(NumberList, hd(NumberList)).

minimum([], Result) -> Result;

minimum([Head|Tail], Result) ->
 case Head < Result of
 true -> minimum(Tail, Head);
 false -> minimum(Tail, Result)
 end.

Solution 6-2
Here is a suggested solution for Étude 6-2.

stats.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating basic statistics on a list of numbers.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(stats).
-export([minimum/1, maximum/1, range/1]).

Solution 6-1 | 73

%% @doc Returns the minimum item in a list of numbers. Fails when given
%% an empty list, as there's nothing reasonable to return.

-spec(minimum(list(number())) -> number()).

minimum(NumberList) ->
 minimum(NumberList, hd(NumberList)).

minimum([], Result) -> Result;

minimum([Head|Tail], Result) ->
 case Head < Result of
 true -> minimum(Tail, Head);
 false -> minimum(Tail, Result)
 end.

%% @doc Returns the maximum item in a list of numbers. Fails when given
%% an empty list, as there's nothing reasonable to return.

-spec(maximum(list(number())) -> number()).

maximum(NumberList) ->
 maximum(NumberList, hd(NumberList)).

maximum([], Result) -> Result;

maximum([Head|Tail], Result) ->
 case Head > Result of
 true -> maximum(Tail, Head);
 false -> maximum(Tail, Result)
 end.

%% @doc Return the range (maximum and minimum) of a list of numbers
%% as a two-element list.
-spec(range([number()]) -> [number()]).

range(NumberList) -> [minimum(NumberList), maximum(NumberList)].

Solution 6-3
Here is a suggested solution for Étude 6-3.

dates.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for splitting a date into a list of
%% year-month-day and finding Julian date.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(dates).

74 | Appendix A: Solutions to Études

-export([date_parts/1, julian/1, is_leap_year/1]).

%% @doc Takes a string in ISO date format (yyyy-mm-dd) and
%% returns a list of integers in form [year, month, day].

-spec(date_parts(list()) -> list()).

date_parts(DateStr) ->
 [YStr, MStr, DStr] = re:split(DateStr, "-", [{return, list}]),
 [element(1, string:to_integer(YStr)),
 element(1, string:to_integer(MStr)),
 element(1, string:to_integer(DStr))].

%% @doc Takes a string in ISO date format (yyyy-mm-dd) and
%% returns the day of the year (Julian date).

-spec(julian(string()) -> integer()).

julian(DateStr) ->
 DaysPerMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
 [Y, M, D] = date_parts(DateStr),
 julian(Y, M, D, DaysPerMonth, 0).

%% @doc Helper function that recursively accumulates the number of days
%% up to the specified date.

-spec(julian(integer(), integer(), integer(), [integer()], integer) -> integer()).

julian(Y, M, D, MonthList, Total) when M > 13 - length(MonthList) ->
 [ThisMonth|RemainingMonths] = MonthList,
 julian(Y, M, D, RemainingMonths, Total + ThisMonth);

julian(Y, M, D, _MonthList, Total) ->
 case M > 2 andalso is_leap_year(Y) of
 true -> Total + D + 1;
 false -> Total + D
 end.

%% @doc Given a year, return true or false depending on whether
%% the year is a leap year.

-spec(is_leap_year(integer()) -> boolean()).

is_leap_year(Year) ->
 (Year rem 4 == 0 andalso Year rem 100 /= 0)
 orelse (Year rem 400 == 0).

Solution 6-4
Here is a suggested solution for Étude 6-4.

Solution 6-4 | 75

teeth.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Show teeth that need attention due to excessive pocket depth.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(teeth).
-export([alert/1]).

%% @doc Create a list of tooth numbers that require attention.

-spec(alert[integer()]) -> [integer()]).

alert(ToothList) -> alert(ToothList, 1, []).

%% @doc Helper function that accumulates the list of teeth needing attention

-spec(alert([integer()], integer(), [integer()]) -> [integer()]).

alert([], _Tooth_number, Result) -> lists:reverse(Result);

alert([Head | Tail], ToothNumber, Result) ->
 case stats:maximum(Head) >= 4 of
 true -> alert(Tail, ToothNumber + 1, [ToothNumber | Result]);
 false -> alert(Tail, ToothNumber + 1, Result)
 end.

stats.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating basic statistics on a list of numbers.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(stats).
-export([minimum/1, maximum/1, range/1]).

%% @doc Returns the minimum item in a list of numbers. Fails when given
%% an empty list, as there's nothing reasonable to return.

-spec(minimum([number()]) -> number()).

minimum(NumberList) ->
 minimum(NumberList, hd(NumberList)).

minimum([], Result) -> Result;

minimum([Head|Tail], Result) ->
 case Head < Result of
 true -> minimum(Tail, Head);
 false -> minimum(Tail, Result)

76 | Appendix A: Solutions to Études

 end.

%% @doc Returns the maximum item in a list of numbers. Fails when given
%% an empty list, as there's nothing reasonable to return.

-spec(maximum([number()]) -> number()).

maximum(NumberList) ->
 maximum(NumberList, hd(NumberList)).

maximum([], Result) -> Result;

maximum([Head|Tail], Result) ->
 case Head > Result of
 true -> maximum(Tail, Head);
 false -> maximum(Tail, Result)
 end.

%% @doc Return the range (maximum and minimum) of a list of numbers
%% as a two-element list.
-spec(range([number()]) -> [number()]).

range(NumberList) -> [minimum(NumberList), maximum(NumberList)].

Solution 6-5
Here is a suggested solution for Étude 6-5.

non_fp.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Generate a random set of teeth, with a certain
%% percentage expected to be bad.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(non_fp).
-export([generate_teeth/2, test_teeth/0]).

%% @doc Generate a list of lists, six numbers per tooth, giving random
%% pocket depths. Takes a string where T="there's a tooth there"
%% and F="no tooth"), and a float giving probability that a tooth is good.

-spec(generate_teeth(string(), float()) -> list(list(integer()))).

generate_teeth(TeethPresent, ProbGood) ->
 random:seed(now()),
 generate_teeth(TeethPresent, ProbGood, []).

%% @doc Helper function that adds tooth data to the ultimate result.

Solution 6-5 | 77

-spec(generate_teeth(string(), float(), [[integer()]]) -> [[integer()]]).

generate_teeth([], _Prob, Result) -> lists:reverse(Result);

generate_teeth([$F | Tail], ProbGood, Result) ->
 generate_teeth(Tail, ProbGood, [[0] | Result]);

generate_teeth([$T | Tail], ProbGood, Result) ->
 generate_teeth(Tail, ProbGood,
 [generate_tooth(ProbGood) | Result]).

-spec(generate_tooth(float()) -> list(integer())).

%% @doc Generates a list of six numbers for a single tooth. Choose a
%% random number between 0 and 1. If that number is less than the probability
%% of a good tooth, it sets the "base depth" to 2, otherwise it sets the base
%% depth to 3.

generate_tooth(ProbGood) ->
 Good = random:uniform() < ProbGood,
 case Good of
 true -> BaseDepth = 2;
 false -> BaseDepth = 3
 end,
 generate_tooth(BaseDepth, 6, []).

%% @doc Take the base depth, add a number in range -1..1 to it,
%% and add it to the list.

generate_tooth(_Base, 0, Result) -> Result;

generate_tooth(Base, N, Result) ->
 [Base + random:uniform(3) - 2 | generate_tooth(Base, N - 1, Result)].

test_teeth() ->
 TList = "FTTTTTTTTTTTTTTFTTTTTTTTTTTTTTTT",
 N = generate_teeth(TList, 0.75),
 print_tooth(N).

print_tooth([]) -> io:format("Finished.~n");
print_tooth([H|T]) ->
 io:format("~p~n", [H]),
 print_tooth(T).

Solution 7-1
Here is a suggested solution for Étude 7-1.

78 | Appendix A: Solutions to Études

calculus.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Find the derivative of a function Fn at point X.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(calculus).
-export([derivative/2]).

%% @doc Calculate derivative by classical definition.
%% (Fn(X + H) - Fn(X)) / H

-spec(derivative(function(), float()) -> float()).

derivative(Fn, X) ->
 Delta = 1.0e-10,
 (Fn(X + Delta) - Fn(X)) / Delta.

Solution 7-2
Here is a suggested solution for Étude 7-2.

patmatch.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Use pattern matching in a list comprehension.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(patmatch).
-export([older_males/0, older_or_male/0]).

%% @doc Select all males older than 40 from a list of tuples giving
%% name, gender, and age.

-spec(older_males() -> list()).

get_people() ->
 [{"Federico", $M, 22}, {"Kim", $F, 45}, {"Hansa", $F, 30},
 {"Vu", $M, 47}, {"Cathy", $F, 32}, {"Elias", $M, 50}].

older_males() ->
 People = get_people(),
 [Name || {Name, Gender, Age} <- People, Gender == $M, Age > 40].

older_or_male() ->
 People = get_people(),
 [Name || {Name, Gender, Age} <- People, (Gender == $M) orelse (Age > 40)].

Solution 7-2 | 79

Solution 7-3
Here is a suggested solution for Étude 7-3.

stats.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating basic statistics on a list of numbers.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(stats).
-export([minimum/1, maximum/1, range/1, mean/1, stdv/1, stdv_sums/2]).

%% @doc Returns the minimum item in a list of numbers. Fails when given
%% an empty list, as there's nothing reasonable to return.

-spec(minimum(list()) -> number()).

minimum(NumberList) ->
 minimum(NumberList, hd(NumberList)).

minimum([], Result) -> Result;

minimum([Head|Tail], Result) ->
 case Head < Result of
 true -> minimum(Tail, Head);
 false -> minimum(Tail, Result)
 end.

%% @doc Returns the maximum item in a list of numbers. Fails when given
%% an empty list, as there's nothing reasonable to return.

-spec(maximum(list()) -> number()).

maximum(NumberList) ->
 maximum(NumberList, hd(NumberList)).

maximum([], Result) -> Result;

maximum([Head|Tail], Result) ->
 case Head > Result of
 true -> maximum(Tail, Head);
 false -> maximum(Tail, Result)
 end.

%% @doc Return the range (maximum and minimum) of a list of numbers
%% as a two-element list.
-spec(range(list()) -> list()).

range(NumberList) -> [minimum(NumberList), maximum(NumberList)].

80 | Appendix A: Solutions to Études

%% @doc Return the mean of the list.
-spec(mean(list) -> float()).

mean(NumberList) ->
 Sum = lists:foldl(fun(V, A) -> V + A end, 0, NumberList),
 Sum / length(NumberList).

stdv_sums(Value, Accumulator) ->
 [Sum, SumSquares] = Accumulator,
 [Sum + Value, SumSquares + Value * Value].

stdv(NumberList) ->
 N = length(NumberList),
 [Sum, SumSquares] = lists:foldl(fun stdv_sums/2, [0, 0], NumberList),
 math:sqrt((N * SumSquares - Sum * Sum) / (N * (N - 1))).

Solution 7-4
Here is a suggested solution for Étude 7-4.

dates.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for splitting a date into a list of
%% year-month-day and finding Julian date.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(dates).
-export([date_parts/1, julian/1, is_leap_year/1]).

%% @doc Takes a string in ISO date format (yyyy-mm-dd) and
%% returns a list of integers in form [year, month, day].

-spec(date_parts(list()) -> list()).

date_parts(DateStr) ->
 [YStr, MStr, DStr] = re:split(DateStr, "-", [{return, list}]),
 [element(1, string:to_integer(YStr)),
 element(1, string:to_integer(MStr)),
 element(1, string:to_integer(DStr))].

%% @doc Takes a string in ISO date format (yyyy-mm-dd) and
%% returns the day of the year (Julian date).
%% Works by summing the days per month up to, but not including,
%% the month in question, then adding the number of days.
%% If it's a leap year and past February, add a leap day.

-spec(julian(list()) -> integer()).

Solution 7-4 | 81

julian(DateStr) ->
 DaysPerMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31],
 [Y, M, D] = date_parts(DateStr),
 {Sublist, _} = lists:split(M - 1, DaysPerMonth),
 Total = lists:foldl(fun(V, A) -> V + A end, 0, Sublist),
 case M > 2 andalso is_leap_year(Y) of
 true -> Total + D + 1;
 false -> Total + D
 end.

is_leap_year(Year) ->
 (Year rem 4 == 0 andalso Year rem 100 /= 0)
 orelse (Year rem 400 == 0).

Solution 7-5
Here is a suggested solution for Étude 7-5.

cards.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for playing a card game.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(cards).
-export([make_deck/0, show_deck/1]).

%% @doc generate a deck of cards
make_deck() ->
 [{Value, Suit} || Value <- ["A", 2, 3, 4, 5, 6, 7, 8, 9, 10, "J", "Q", "K"],
 Suit <- ["Clubs", "Diamonds", "Hearts", "Spades"]].

show_deck(Deck) ->
 lists:foreach(fun(Item) -> io:format("~p~n", [Item]) end, Deck).

Solution 7-6
Here is a suggested solution for Étude 7-6.

cards.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for playing a card game.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(cards).
-export([make_deck/0, shuffle/1]).

82 | Appendix A: Solutions to Études

%% @doc generate a deck of cards
make_deck() ->
 [{Value, Suit} || Value <- ["A", 2, 3, 4, 5, 6, 7, 8, 9, 10, "J", "Q", "K"],
 Suit <- ["Clubs", "Diamonds", "Hearts", "Spades"]].

shuffle(List) -> shuffle(List, []).

%% If the list is empty, return the accumulated value.
shuffle([], Acc) -> Acc;

%% Otherwise, find a random location in the list and split the list
%% at that location. Let's say the list has 52 elements and the random
%% location is location 22. The first 22 elements go into Leading, and the
%% last 30 elements go into [H|T]. Thus, H would contain element 23, and
%% T would contain elements 24 through 52.
%%
%% H is the "chosen element". It goes into the accumulator (the shuffled list)
%% and then we call shuffle again with the remainder of the deck: the
%% leading elements and the tail of the split list.

shuffle(List, Acc) ->
 {Leading, [H | T]} = lists:split(random:uniform(length(List)) - 1, List),
 shuffle(Leading ++ T, [H | Acc]).

Solution 8-1
Here is a suggested solution for Étude 8-1.

cards.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for playing card games.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(cards).
-export([make_deck/0, shuffle/1]).

%% @doc generate a deck of cards
-type card()::{string()|integer(), string()}.
-spec(make_deck() -> [card()]).

%%make_deck() ->
%% [{Value, Suit} || Value <- ["A", 2, 3, 4, 5, 6, 7, 8, 9, 10, "J", "Q", "K"],
%% Suit <- ["Clubs", "Diamonds", "Hearts", "Spades"]].

make_deck() ->
 [{Value, Suit} || Value <- ["A", 2, 3, 4],
 Suit <- ["Clubs", "Diamonds"]].

%% Do a Fisher-Yates shuffle of a deck

Solution 8-1 | 83

-spec(shuffle([card()])-> [card()]).

shuffle(List) -> shuffle(List, []).

%% If the list is empty, return the accumulated value.
shuffle([], Acc) -> Acc;

%% Otherwise, find a random location in the list and split the list
%% at that location. Let's say the list has 52 elements and the random
%% location is location 22. The first 22 elements go into Leading, and the
%% last 30 elements go into [H|T]. Thus, H would contain element 23, and
%% T would contain elements 24 through 52.
%%
%% H is the "chosen element". It goes into the accumulator (the shuffled list)
%% and then we call shuffle again with the remainder of the deck: the
%% leading elements and the tail of the split list.

shuffle(List, Acc) ->
 {Leading, [H | T]} = lists:split(random:uniform(length(List)) - 1, List),
 shuffle(Leading ++ T, [H | Acc]).

game.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Play the card game "war" with two players.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(game).
-export([play_game/0, dealer/0, player/2, value/1]).

%% @doc create a dealer
play_game() ->
 spawn(game, dealer, []).

dealer() ->
 random:seed(now()),
 DealerPid = self(),
 Deck = cards:shuffle(cards:make_deck()),
 {P1Cards, P2Cards} = lists:split(trunc(length(Deck) / 2), Deck),
 io:format("About to spawn players each with ~p cards.~n",
 [trunc(length(Deck) / 2)]),
 P1 = spawn(game, player, [DealerPid, P1Cards]),
 P2 = spawn(game, player, [DealerPid, P2Cards]),
 io:format("Spawned players ~p and ~p~n", [P1, P2]),
 dealer([P1, P2], pre_battle, [], [], 0, []).

%% The dealer has to keep track of the players' process IDs,
%% the cards they have given to the dealer for comparison,
%% how many players have responded (0, 1, or 2), and the pile
%% in the middle of the table in case of a war.

84 | Appendix A: Solutions to Études

dealer(Pids, State, P1Cards, P2Cards, Count, Pile) ->
 [P1, P2] = Pids,
 NCards = if
 Pile == [] -> 1;
 Pile /= [] -> 3
 end,
 case State of
 pre_battle ->
 P1 ! {give_cards, NCards},
 P2 ! {give_cards, NCards},
 dealer(Pids, await_battle, P1Cards, P2Cards, Count, Pile);
 await_battle ->
 receive
 {accept, Pid, Data} ->
 NextCount = Count + 1,
 case Pid of
 P1 -> Next_P1Cards = Data, Next_P2Cards = P2Cards;
 P2 -> Next_P1Cards = P1Cards, Next_P2Cards = Data
 end
 end,
 if
 NextCount == 2 -> NextState = check_cards;
 NextCount /= 2 -> NextState = State
 end,
 dealer(Pids, NextState, Next_P1Cards, Next_P2Cards,
 NextCount, Pile);
 check_cards ->
 Winner = game_winner(P1Cards, P2Cards),
 case Winner of
 0 ->
 io:format("Compare ~p to ~p~n", [P1Cards, P2Cards]),
 NewPile = Pile ++ P1Cards ++ P2Cards,
 case battle_winner(P1Cards, P2Cards) of
 0 -> dealer(Pids, pre_battle, [], [], 0, NewPile);
 1 ->
 P1 ! {take_cards, NewPile},
 dealer(Pids, await_confirmation, [], [], 0, []);
 2 ->
 P2 ! {take_cards, NewPile},
 dealer(Pids, await_confirmation, [], [], 0, [])
 end;
 3 ->
 io:format("It's a draw!~n"),
 end_game(Pids);
 _ ->
 io:format("Player ~p wins~n", [Winner]),
 end_game(Pids)
 end;
 await_war->
 io:format("Awaiting war~n");
 await_confirmation ->
 io:format("Awaiting confirmation of player receiving cards~n"),

Solution 8-1 | 85

 receive
 {confirmed, _Pid, _Data} ->
 dealer(Pids, pre_battle, [], [], 0, [])
 end
 end.

end_game(Pids) ->
 lists:foreach(fun(Process) -> exit(Process, kill) end, Pids),
 io:format("Game finished.~n").

%% Do we have a winner? If both players are out of cards,
%% it's a draw. If one player is out of cards, the other is the winner.

game_winner([], []) -> 3;
game_winner([], _) -> 2;
game_winner(_, []) -> 1;
game_winner(_, _) -> 0.

battle_winner(P1Cards, P2Cards) ->
 V1 = value(hd(lists:reverse(P1Cards))),
 V2 = value(hd(lists:reverse(P2Cards))),
 Winner = if
 V1 > V2 -> 1;
 V2 > V1 -> 2;
 V1 == V2 -> 0
 end,
 io:format("Winner of ~p vs. ~p is ~p~n", [V1, V2, Winner]),
 Winner = Winner.

player(Dealer, Hand) ->
 receive
 {Command, Data} ->
 case Command of
 give_cards ->
 {ToSend, NewHand} = give_cards(Hand, Data),
 io:format("Sending ~p to ~p~n", [ToSend, Dealer]),
 Dealer!{accept, self(), ToSend};
 take_cards ->
 io:format("~p now has ~p (cards)~n", [self(),
 length(Data) + length(Hand)]),
 NewHand = Hand ++ Data,
 Dealer!{confirmed, self(), []}
 end
 end,
 player(Dealer, NewHand).

%% Player gives N cards from current Hand. N is 1 or 3,
%% depending if there is a war or not.
%% If a player is asked for 3 cards but doesn't have enough,
%% give all the cards in the hand.
%% This function returns a tuple: {[cards to send], [remaining cards in hand]}

86 | Appendix A: Solutions to Études

give_cards([], _N) -> {[],[]};
give_cards([A], _N) -> {[A],[]};
give_cards([A, B], N) ->
 if
 N == 1 -> {[A], [B]};
 N == 3 -> {[A, B], []}
 end;
give_cards(Hand, N) ->
 if
 N == 1 -> {[hd(Hand)], tl(Hand)};
 N == 3 ->
 [A, B, C | Remainder] = Hand,
 {[A, B, C], Remainder}
 end.

%% @doc Returns the value of a card. Aces are high; K > Q > J
-spec(value({cards:card()}) -> integer()).

value({V, _Suit}) ->
 if
 is_integer(V) -> V;
 is_list(V) ->
 case hd(V) of
 $J -> 11;
 $Q -> 12;
 $K -> 13;
 $A -> 14
 end
 end.

Solution 9-1
Here is a suggested solution for Étude 9-1.

stats.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Functions for calculating basic statistics on a list of numbers.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(stats).
-export([minimum/1, maximum/1, range/1, mean/1, stdv/1, stdv_sums/2]).

%% @doc Returns the minimum item in a list of numbers. Uses
%% try/catch to return an error when there's an empty list,
%% as there's nothing reasonable to return.

-spec(minimum(list()) -> number()).

minimum(NumberList) ->

Solution 9-1 | 87

 try minimum(NumberList, hd(NumberList)) of
 Answer -> Answer
 catch
 error:Error -> {error, Error}
 end.

minimum([], Result) -> Result;

minimum([Head|Tail], Result) ->
 case Head < Result of
 true -> minimum(Tail, Head);
 false -> minimum(Tail, Result)
 end.

%% @doc Returns the maximum item in a list of numbers. Catches
%% errors when given an empty list.

-spec(maximum(list()) -> number()).

maximum(NumberList) ->
 try
 maximum(NumberList, hd(NumberList))
 catch
 error:Error-> {error, Error}
 end.

maximum([], Result) -> Result;

maximum([Head|Tail], Result) ->
 case Head > Result of
 true -> maximum(Tail, Head);
 false -> maximum(Tail, Result)
 end.

%% @doc Return the range (maximum and minimum) of a list of numbers
%% as a two-element list.
-spec(range(list()) -> list()).

range(NumberList) -> [minimum(NumberList), maximum(NumberList)].

%% @doc Return the mean of the list.
-spec(mean(list()) -> float()).

mean(NumberList) ->
 try
 Sum = lists:foldl(fun(V, A) -> V + A end, 0, NumberList),
 Sum / length(NumberList)
 catch
 error:Error -> {error, Error}
 end.

%% @doc Helper function to generate sums and sums of squares

88 | Appendix A: Solutions to Études

%% when calculating standard deviation.

-spec(stdv_sums(number(),[number()]) -> [number()]).

stdv_sums(Value, Accumulator) ->
 [Sum, SumSquares] = Accumulator,
 [Sum + Value, SumSquares + Value * Value].

%% @doc Calculate the standard deviation of a list of numbers.

-spec(stdv([number()]) -> float()).

stdv(NumberList) ->
 N = length(NumberList),
 try
 [Sum, SumSquares] = lists:foldl(fun stdv_sums/2, [0, 0], NumberList),
 math:sqrt((N * SumSquares - Sum * Sum) / (N * (N - 1)))
 catch
 error:Error -> {error, Error}
 end.

Solution 9-2
Here is a suggested solution for Étude 9-2.

bank.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Implement a bank account that logs its transactions.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(bank).
-export([account/1]).

-spec(account(pid()) -> number()).

%% @doc create a client and give it the process ID for an account
account(Balance) ->
 Input = io:get_line("D)eposit, W)ithdraw, B)alance, Q)uit: "),
 Action = hd(Input),

 case Action of
 $D ->
 Amount = get_number("Amount to deposit: "),
 NewBalance = transaction(deposit, Balance, Amount);
 $W ->
 Amount = get_number("Amount to withdraw: "),
 NewBalance = transaction(withdraw, Balance, Amount);
 $B ->
 NewBalance = transaction(balance, Balance);

Solution 9-2 | 89

 $Q ->
 NewBalance = Balance;
 _ ->
 io:format("Unknown command ~c~n", [Action]),
 NewBalance = Balance
 end,
 if
 Action /= $Q ->
 account(NewBalance);
 true -> true
 end.

%% @doc Present a prompt and get a number from the
%% user. Allow either integers or floats.
get_number(Prompt) ->
 Str = io:get_line(Prompt),
 {Test, _} = string:to_float(Str),
 case Test of
 error -> {N, _} = string:to_integer(Str);
 _ -> N = Test
 end,
 N.

transaction(Action, Balance, Amount) ->
 case Action of
 deposit ->
 if
 Amount >= 10000 ->
 error_logger:warning_msg("Excessive deposit ~p~n", [Amount]),
 io:format("Your deposit of $~p may be subject to hold.", [Amount]),
 io:format("Your new balance is ~p~n", [Balance + Amount]),
 NewBalance = Balance + Amount;
 Amount < 0 ->
 error_logger:error_msg("Negative deposit amount ~p~n", [Amount]),
 io:format("Deposits may not be less than zero."),
 NewBalance = Balance;
 Amount >= 0 ->
 error_logger:info_msg("Successful deposit ~p~n", [Amount]),
 NewBalance = Balance + Amount,
 io:format("Your new balance is ~p~n", [NewBalance])
 end;
 withdraw ->
 if
 Amount > Balance ->
 error_logger:error_msg("Overdraw ~p from balance ~p~n", [Amount,
 Balance]),
 io:format("You cannot withdraw more than your current balance of ~p.~n",
 [Balance]),
 NewBalance = Balance;
 Amount < 0 ->
 error_logger:error_msg("Negative withdrawal amount ~p~n", [Amount]),

90 | Appendix A: Solutions to Études

 io:format("Withdrawals may not be less than zero."),
 NewBalance = Balance;
 Amount >= 0 ->
 error_logger:info_msg("Successful withdrawal ~p~n", [Amount]),
 NewBalance = Balance - Amount,
 io:format("Your new balance is ~p~n", [NewBalance])
 end
 end,
 NewBalance.

transaction(balance, Balance) ->
 error_logger:info_msg("Balance inquiry ~p~n", [Balance]),
 Balance.

Solution 10-1
Here is a suggested solution for Étude 10-1.

phone_records.hrl
-record(phone_call,
 {phone_number, start_date, start_time, end_date, end_time}).

phone_ets.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Read in a database of phone calls
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(phone_ets).
-export([setup/1, summary/0, summary/1]).
-include("phone_records.hrl").

%% @doc Create an ets table of phone calls from the given file name.

-spec(setup(string()) -> atom()).

setup(FileName) ->

 %% If the table exists, delete it
 case ets:info(call_table) of
 undefined -> false;
 _ -> ets:delete(call_table)
 end,

 %% and create it anew
 ets:new(call_table, [named_table, bag,
 {keypos, #phone_call.phone_number}]),

 {ResultCode, InputFile} = file:open(FileName, [read]),

Solution 10-1 | 91

 case ResultCode of
 ok -> read_item(InputFile);
 _ -> io:format("Error opening file: ~p~n", [InputFile])
 end.

%% Read a line from the input file, and insert its contents into
%% the call_table. This function is called recursively until end of file

-spec(read_item(file:io_device()) -> atom()).

read_item(InputFile) ->
 RawData = io:get_line(InputFile, ""),
 if
 is_list(RawData) ->
 Data = string:strip(RawData, right, $\n),
 [Number, SDate, STime, EDate, ETime] =
 re:split(Data, ",", [{return, list}]),
 ets:insert(call_table, #phone_call{phone_number = Number,
 start_date = to_date(SDate), start_time = to_time(STime),
 end_date = to_date(EDate), end_time= to_time(ETime)}),
 read_item(InputFile);
 RawData == eof -> ok
 end.

%% @doc Convert a string in form "yyyy-mm-dd" to a tuple {yyyy, mm, dd}
%% suitable for use with the calendar module.

-spec(to_date(string()) -> {integer(), integer(), integer()}).

to_date(Date) ->
 [Year, Month, Day] = re:split(Date, "-", [{return, list}]),
 [{Y, _}, {M, _}, {D, _}] = lists:map(fun string:to_integer/1,
 [Year, Month, Day]),
 {Y, M, D}.

%% @doc Convert a string in form "hh:mm:ss" to a tuple {hh, mm, ss}
%% suitable for use with the calendar module.

-spec(to_time(string()) -> {integer(), integer(), integer()}).

to_time(Time) ->
 [Hour, Minute, Second] = re:split(Time, ":", [{return, list}]),
 [{H, _}, {M, _}, {S, _}] = lists:map(fun string:to_integer/1,
 [Hour, Minute, Second]),
 {H, M, S}.

%% @doc Create a summary of number of minutes used by all phone numbers.

-spec(summary() -> [tuple(string(), integer())]).

summary() ->
 FirstKey = ets:first(call_table),

92 | Appendix A: Solutions to Études

 summary(FirstKey, []).

summary(Key, Result) ->
 NextKey = ets:next(call_table, Key),
 case NextKey of
 '$end_of_table' -> Result;
 _ -> summary(NextKey, [hd(summary(Key)) | Result])
 end.

%% @doc Create a summary of number of minutes used by one phone number.

-spec(summary(string()) -> [tuple(string(), integer())]).

summary(PhoneNumber) ->
 Calls = ets:lookup(call_table, PhoneNumber),
 Total = lists:foldl(fun subtotal/2, 0, Calls),
 [{PhoneNumber, Total}].

subtotal(Item, Accumulator) ->
 StartSeconds = calendar:datetime_to_gregorian_seconds(
 {Item#phone_call.start_date, Item#phone_call.start_time}),
 EndSeconds = calendar:datetime_to_gregorian_seconds(
 {Item#phone_call.end_date, Item#phone_call.end_time}),
 Accumulator + ((EndSeconds - StartSeconds + 59) div 60).

generate_calls.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Generate a random set of data for phone calls
%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(generate_calls).
-export([make_call_list/1, format_date/1, format_time/1]).

make_call_list(N) ->
 Now = calendar:datetime_to_gregorian_seconds({{2013, 3, 10}, {9, 0, 0}}),
 Numbers = [
 {"213-555-0172", Now},
 {"301-555-0433", Now},
 {"415-555-7871", Now},
 {"650-555-3326", Now},
 {"729-555-8855", Now},
 {"838-555-1099", Now},
 {"946-555-9760", Now}
],
 CallList = make_call_list(N, Numbers, []),
 {Result, OutputFile} = file:open("call_list.csv", [write]),
 case Result of
 ok -> write_item(OutputFile, CallList);
 error -> io:format("Error: ~p~n", OutputFile)
 end.

Solution 10-1 | 93

make_call_list(0, _Numbers, Result) -> lists:reverse(Result);

make_call_list(N, Numbers, Result) ->
 Entry = random:uniform(length(Numbers)),
 {Head, Tail} = lists:split(Entry - 1, Numbers),
 {Number, LastCall} = hd(Tail),
 StartCall = LastCall + random:uniform(120) + 20,
 Duration = random:uniform(180) + 40,
 EndCall = StartCall + Duration,
 Item = [Number, format_date(StartCall), format_time(StartCall),
 format_date(EndCall), format_time(EndCall)],
 UpdatedNumbers = Head ++ [{Number, EndCall} | tl(Tail)],
 make_call_list(N - 1, UpdatedNumbers, [Item | Result]).

write_item(OutputFile, []) ->
 file:close(OutputFile);

write_item(OutputFile, [H|T]) ->
 io:format("~s ~s ~s ~s ~s~n", H),
 io:fwrite(OutputFile, "~s,~s,~s,~s,~s~n", H),
 write_item(OutputFile, T).

format_date(GSeconds) ->
 {Date, _Time} = calendar:gregorian_seconds_to_datetime(GSeconds),
 {Y, M, D} = Date,
 lists:flatten(io_lib:format("~4b-~2..0b-~2..0b", [Y, M, D])).

format_time(GSeconds) ->
 {_Date, Time} = calendar:gregorian_seconds_to_datetime(GSeconds),
 {M, H, S} = Time,
 lists:flatten(io_lib:format("~2..0b:~2..0b:~2..0b", [M, H, S])).

Solution 10-2
Here is a suggested solution for Étude 10-2.

phone_records.hrl
-record(phone_call,
 {phone_number, start_date, start_time, end_date, end_time}).
-record(customer,
 {phone_number, last_name, first_name, middle_name, rate}).

phone_mnesia.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Read in a database of phone calls and customers.
%% @copyright 2013 J D Eisenberg
%% @version 0.1

94 | Appendix A: Solutions to Études

-module(phone_mnesia).
-export([setup/2, summary/3]).
-include("phone_records.hrl").
-include_lib("stdlib/include/qlc.hrl").

%% @doc Set up Mnesia tables for phone calls and customers
%% given their file names

-spec(setup(string(), string()) -> atom()).

setup(CallFileName, CustomerFileName) ->

 mnesia:create_schema([node()]),
 mnesia:start(),
 mnesia:delete_table(phone_call),
 mnesia:delete_table(customer),

 fill_table(phone_call, CallFileName, fun add_call/1,
 record_info(fields, phone_call), bag),
 fill_table(customer, CustomerFileName, fun add_customer/1,
 record_info(fields, customer), set).

%% @doc Fill the given table with data from given file name.
%% AdderFunction assigns data to fields and writes it to the table;
%% RecordInfo is used when creating the table, as is the TableType.

fill_table(TableName, FileName, AdderFunction, RecordInfo, TableType) ->
 mnesia:create_table(TableName, [{attributes, RecordInfo}, {type, TableType}]),

 {OpenResult, InputFile} = file:open(FileName, [read]),
 case OpenResult of
 ok ->
 mnesia:transaction(
 fun() -> read_file(InputFile, AdderFunction) end);
 _ -> io:format("Error opening file: ~p~n", [FileName])
 end.

%% @doc Read a line from InputFile, and insert its contents into
%% the appropriate table by using AdderFunction.

-spec(read_file(file:io_device(), function()) -> atom()).

read_file(InputFile, AdderFunction) ->
 RawData = io:get_line(InputFile, ""),
 if
 is_list(RawData) ->
 Data = string:strip(RawData, right, $\n),
 ItemList = re:split(Data, ",", [{return, list}]),
 AdderFunction(ItemList),
 read_file(InputFile, AdderFunction);
 RawData == eof -> ok
 end.

Solution 10-2 | 95

%% Add a phone call record; the data is in an ItemList.

-spec(add_call(list()) -> undefined).

add_call(ItemList) ->
 [Number, SDate, STime, EDate, ETime] = ItemList,
 mnesia:write(#phone_call{phone_number = Number,
 start_date = to_date(SDate), start_time = to_time(STime),
 end_date = to_date(EDate), end_time= to_time(ETime)}).

%% Add a customer record; the data is in an ItemList.

-spec(add_customer(list()) -> undefined).

add_customer(ItemList) ->
 [Phone, Last, First, Middle, Rate] = ItemList,
 mnesia:write(#customer{phone_number = Phone, last_name = Last,
 first_name = First, middle_name = Middle, rate = to_float(Rate)}).

%% @doc Convert a string in form "yyyy-mm-dd" to a tuple {yyyy, mm, dd}
%% suitable for use with the calendar module.

-spec(to_date(string()) -> {integer(), integer(), integer()}).

to_date(Date) ->
 [Year, Month, Day] = re:split(Date, "-", [{return, list}]),
 [{Y, _}, {M, _}, {D, _}] = lists:map(fun string:to_integer/1,
 [Year, Month, Day]),
 {Y, M, D}.

%% @doc Convert a string in form "hh:mm:ss" to a tuple {hh, mm, ss}
%% suitable for use with the calendar module.

-spec(to_time(string()) -> {integer(), integer(), integer()}).

to_time(Time) ->
 [Hour, Minute, Second] = re:split(Time, ":", [{return, list}]),
 [{H, _}, {M, _}, {S, _}] = lists:map(fun string:to_integer/1,
 [Hour, Minute, Second]),
 {H, M, S}.

%% @doc Convenience routine to convert a string to float.
%% In case of an error, return zero.

-spec(to_float(string()) -> float()).

to_float(Str) ->
 {FPart, _} = string:to_float(Str),
 case FPart of

96 | Appendix A: Solutions to Études

 error -> 0;
 _ -> FPart
 end.

summary(Last, First, Middle) ->

 QHandle = qlc:q([Customer ||
 Customer <- mnesia:table(customer),
 Customer#customer.last_name == Last,
 Customer#customer.first_name == First,
 Customer#customer.middle_name == Middle]),

 {_Result, [ThePerson|_]} =
 mnesia:transaction(fun() -> qlc:e(QHandle) end),

 {_Result, Calls} = mnesia:transaction(
 fun() ->
 qlc:e(
 qlc:q([Call ||
 Call <- mnesia:table(phone_call),
 QCustomer <- QHandle,
 QCustomer#customer.phone_number == Call#phone_call.phone_number
]
)
)
 end
),

 TotalMinutes = lists:foldl(fun subtotal/2, 0, Calls),

 [{ThePerson#customer.phone_number,
 TotalMinutes, TotalMinutes * ThePerson#customer.rate}].

subtotal(Item, Accumulator) ->
 StartSeconds = calendar:datetime_to_gregorian_seconds(
 {Item#phone_call.start_date, Item#phone_call.start_time}),
 EndSeconds = calendar:datetime_to_gregorian_seconds(
 {Item#phone_call.end_date, Item#phone_call.end_time}),
 Accumulator + ((EndSeconds - StartSeconds + 59) div 60).

pet_records.hrl
-record(person,
 {id_number, name, age, gender, city, amount_owed}).
-record(animal,
 {id_number, name, species, gender, owner_id}).

pet_mnesia.erl
%% @author J D Eisenberg <jdavid.eisenberg@gmail.com>
%% @doc Read in a database of people and their pets
%% appointments.

Solution 10-2 | 97

%% @copyright 2013 J D Eisenberg
%% @version 0.1

-module(pet_mnesia).
-export([setup/2, get_info/0, get_info_easier/0]).
-include("pet_records.hrl").
-include_lib("stdlib/include/qlc.hrl").

%% @doc Set up Mnesia tables for phone calls and customers
%% given their file names

-spec(setup(string(), string()) -> atom()).

setup(PersonFileName, AnimalFileName) ->

 mnesia:create_schema([node()]),
 mnesia:start(),
 mnesia:delete_table(person),
 mnesia:delete_table(animal),

 fill_table(person, PersonFileName, fun add_person/1,
 record_info(fields, person), set),
 fill_table(animal, AnimalFileName, fun add_animal/1,
 record_info(fields, animal), set).

%% @doc Fill the given table with data from given file name.
%% AdderFunction assigns data to fields and writes it to the table;
%% RecordInfo is used when creating the table, as is the TableType.

fill_table(TableName, FileName, AdderFunction, RecordInfo, TableType) ->
 mnesia:create_table(TableName, [{attributes, RecordInfo}, {type, TableType}]),

 {OpenResult, InputFile} = file:open(FileName, [read]),
 case OpenResult of
 ok ->
 TransResult = mnesia:transaction(
 fun() -> read_file(InputFile, AdderFunction) end),
 io:format("Transaction result ~p~n", [TransResult]);
 _ -> io:format("Error opening file: ~p~n", [FileName])
 end.

%% @doc Read a line from InputFile, and insert its contents into
%% the appropriate table by using AdderFunction.

-spec(read_file(file:io_device(), function()) -> atom()).

read_file(InputFile, AdderFunction) ->
 RawData = io:get_line(InputFile, ""),
 if
 is_list(RawData) ->
 Data = string:strip(RawData, right, $\n),
 ItemList = re:split(Data, ",", [{return, list}]),

98 | Appendix A: Solutions to Études

 AdderFunction(ItemList),
 read_file(InputFile, AdderFunction);
 RawData == eof -> ok
 end.

%% Add a person record; the data is in an ItemList.

-spec(add_person(list()) -> undefined).

add_person(ItemList) ->
 [Id, Name, Age, Gender, City, Owed] = ItemList,
 mnesia:write(#person{id_number = to_int(Id), name = Name,
 age = to_int(Age), gender = Gender, city = City,
 amount_owed = to_float(Owed)}).

%% Add an animal record; the data is in an ItemList.

-spec(add_animal(list()) -> undefined).

add_animal(ItemList) ->
 [Id, Name, Species, Gender, Owner] = ItemList,
 mnesia:write(#animal{id_number = to_int(Id),
 name = Name, species = Species, gender = Gender,
 owner_id = to_int(Owner)}).

%% @doc Convenience routine to convert a string to integer.
%% In case of an error, return zero.

-spec(to_int(string()) -> integer()).

to_int(Str) ->
 {IPart, _} = string:to_integer(Str),
 case IPart of
 error -> 0;
 _ -> IPart
 end.

%% @doc Convenience routine to convert a string to float.
%% In case of an error, return zero.

-spec(to_float(string()) -> float()).

to_float(Str) ->
 {FPart, _} = string:to_float(Str),
 case FPart of
 error -> 0;
 _ -> FPart
 end.

get_info() ->
 People = mnesia:transaction(

Solution 10-2 | 99

 fun() -> qlc:e(
 qlc:q([P ||
 P <- mnesia:table(person),
 P#person.age >= 21,
 P#person.gender == "M",
 P#person.city == "Podunk"]
)
)
 end
),

 Pets = mnesia:transaction(
 fun() -> qlc:e(
 qlc:q([{A#animal.name, A#animal.species, P#person.name} ||
 P <- mnesia:table(person),
 P#person.age >= 21,
 P#person.gender == "M",
 P#person.city == "Podunk",
 A <- mnesia:table(animal),
 A#animal.owner_id == P#person.id_number])
)
 end
),
 [People, Pets].

get_info_easier() ->

 %% "Pre-process" the list comprehension for finding people

 QHandle = qlc:q([P ||
 P <- mnesia:table(person),
 P#person.age >= 21,
 P#person.gender == "M",
 P#person.city == "Podunk"]
),

 %% Evaluate it to retrieve the people you want

 People = mnesia:transaction(
 fun() -> qlc:e(QHandle) end
),

 %% And use the handle again when retrieving
 %% information about their pets

 Pets = mnesia:transaction(
 fun() -> qlc:e(
 qlc:q([{A#animal.name, A#animal.species, P#person.name} ||
 P <- QHandle,
 A <- mnesia:table(animal),
 A#animal.owner_id == P#person.id_number])
)

100 | Appendix A: Solutions to Études

 end
),
 [People, Pets].

Solution 11-1
Here is a suggested solution for Étude 11-1.

weather.erl
-module(weather).
-behaviour(gen_server).
-include_lib("xmerl/include/xmerl.hrl").
-export([start_link/0]). % convenience call for startup
-export([init/1,
 handle_call/3,
 handle_cast/2,
 handle_info/2,
 terminate/2,
 code_change/3]). % gen_server callbacks
-define(SERVER, ?MODULE). % macro that just defines this module as server

%%% convenience method for startup
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%% gen_server callbacks
init([]) ->
 inets:start(),
 {ok, []}.

handle_call(Request, _From, State) ->
 {Reply, NewState} = get_weather(Request, State),
 {reply, Reply, NewState}.

handle_cast(_Message, State) ->
 io:format("Most recent requests: ~p\n", [State]),
 {noreply, State}.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_Reason, _State) ->
 inets:stop(),
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%% Internal functions

Solution 11-1 | 101

%% Given a 4-letter station code as the Request, return its basic
%% weather information as a {key,value} list. If successful, add the
%% station name to the State, which will keep track of recently-accessed
%% weather stations.

get_weather(Request, State) ->
 URL = "http://w1.weather.gov/xml/current_obs/" ++ Request ++ ".xml",
 {Result, Info} = httpc:request(URL),
 case Result of
 error -> {{Result, Info}, State};
 ok ->
 {{_Protocol, Code, _CodeStr}, _Attrs, WebData} = Info,
 case Code of
 404 ->
 {{error, 404}, State};
 200 ->
 Weather = analyze_info(WebData),
 {{ok, Weather}, [Request | lists:sublist(State, 10)]}
 end
 end.

%% Take raw XML data and return a set of {key, value} tuples

analyze_info(WebData) ->
 %% list of fields that you want to extract
 ToFind = [location, observation_time_rfc822, weather, temperature_string],

 %% get just the parsed data from the XML parse result
 Parsed = element(1, xmerl_scan:string(WebData)),

 %% This is the list of all children under <current_observation>
 Children = Parsed#xmlElement.content,

 %% Find only XML elements and extract their names and their text content.
 %% You need the guard so that you don't process the newlines in the
 %% data (they are XML text descendants of the root element).
 ElementList = [{El#xmlElement.name, extract_text(El#xmlElement.content)}
 || El <- Children, element(1, El) == xmlElement],

 %% ElementList is now a keymap; get the data you want from it.
 lists:map(fun(Item) -> lists:keyfind(Item, 1, ElementList) end, ToFind).

%% Given the parsed content of an XML element, return its first node value
%% (if it's a text node); otherwise return the empty string.

extract_text(Content) ->
 Item = hd(Content),
 case element(1, Item) of
 xmlText -> Item#xmlText.value;
 _ -> ""
 end.

102 | Appendix A: Solutions to Études

weather_sup.erl
-module(weather_sup).
-behaviour(supervisor).
-export([start_link/0]). % convenience call for startup

-export([init/1]). % supervisor calls
-define(SERVER, ?MODULE).

%%% convenience method for startup
start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

%%% supervisor callback
init([]) ->
 RestartStrategy = one_for_one,
 MaxRestarts = 1, % one restart every
 MaxSecondsBetweenRestarts = 5, % five seconds

 SupFlags = {RestartStrategy, MaxRestarts, MaxSecondsBetweenRestarts},

 Restart = permanent, % or temporary, or transient
 Shutdown = 2000, % milliseconds, could be infinity or brutal_kill
 Type = worker, % could also be supervisor

 Weather = {weather, {weather, start_link, []},
 Restart, Shutdown, Type, [weather]},

 {ok, {SupFlags, [Weather]}}.

Solution 11-2
Here is a suggested solution for Étude 11-2. Since the bulk of the code is identical to the
code in the previous étude, the only code shown here is the revised -export list and the
added functions.

weather.erl
-export([report/1, recent/0]). % wrapper functions

%% Wrapper to hide internal details when getting a weather report
report(Station) ->
 gen_server:call(?SERVER, Station).

%% Wrapper to hide internal details when getting a list of recently used
%% stations.
recent() ->
 gen_server:cast(?SERVER, "").

Solution 11-2 | 103

Solution 11-3
Here is a suggested solution for Étude 11-3. Since the bulk of the code is identical to the
previous étude, the only code shown here is the added and revised code.

%% @doc Connect to a named server
connect(ServerName) ->
 Result = net_adm:ping(ServerName),
 case Result of
 pong -> io:format("Connected to server.~n");
 pang -> io:format("Cannot connect to ~p.~n", [ServerName])
 end.

%% Wrapper to hide internal details when getting a weather report
report(Station) ->
 gen_server:call({global, weather}, Station).

%% Wrapper to hide internal details when getting a list of recently used
%% stations.
recent() ->
 gen_server:call({global,weather}, recent).

%%% convenience method for startup
start_link() ->
 gen_server:start_link({global, ?SERVER}, ?MODULE, [], []).

%%% gen_server callbacks
init([]) ->
 inets:start(),
 {ok, []}.

handle_call(recent, _From, State) ->
 {reply, State, State};
handle_call(Request, _From, State) ->
 {Reply, NewState} = get_weather(Request, State),
 {reply, Reply, NewState}.

handle_cast(_Message, State) ->
 io:format("Most recent requests: ~p\n", [State]),
 {noreply, State}.

Solution 11-4
Here is a suggested solution for Étude 11-4.

chatroom.erl
-module(chatroom).
-behaviour(gen_server).
-export([start_link/0]). % convenience call for startup
-export([init/1,

104 | Appendix A: Solutions to Études

 handle_call/3,
 handle_cast/2,
 handle_info/2,
 terminate/2,
 code_change/3]). % gen_server callbacks

-define(SERVER, ?MODULE). % macro that defines this module as the server

% The server state consists of a list of tuples for each person in chat.
% Each tuple has the format {{UserName, UserServer}, PID of person}

%%% convenience method for startup
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%% gen_server callbacks
init([]) ->
 {ok, []}.

%% Check to see if a user name/server pair is unique;
%% if so, add it to the server's state

handle_call({login, UserName, ServerRef}, From, State) ->
 {FromPid, _FromTag} = From,
 case lists:keymember({UserName, ServerRef}, 1, State) of
 true ->
 NewState = State,
 Reply = {error, "User " ++ UserName ++ " already in use."};
 false ->
 NewState = [{{UserName, ServerRef}, FromPid} | State],
 Reply = {ok, "Logged in."}
 end,
 {reply, Reply, NewState};

%% Log out the person sending the message, but only
%% if they're logged in already.

handle_call({logout}, From, State) ->
 {FromPid, _FromTag} = From,
 case lists:keymember(FromPid, 2, State) of
 true ->
 NewState = lists:keydelete(FromPid, 2, State),
 Reply = {ok, logged_out};
 false ->
 NewState = State,
 Reply = {error, not_logged_in}
 end,
 {reply, Reply, NewState};

%% When receiving a message from a person, use the From PID to
%% get the user's name and server name from the chatroom server state.
%% Send the message via a "cast" to everyone who is NOT the sender.

Solution 11-4 | 105

handle_call({say, Text}, From, State) ->
 {FromPid, _FromTag} = From,

 case lists:keymember(FromPid, 2, State) of
 true ->
 {value, {{SenderName, SenderServer}, _}} =
 lists:keysearch(FromPid, 2, State),

 % For debugging: get the list of recipients.
 RecipientList = [{RecipientName, RecipientServer} ||
 {{RecipientName, RecipientServer}, _} <- State,
 {RecipientName, RecipientServer} /= {SenderName, SenderServer}],
 io:format("Recipient list: ~p~n", [RecipientList]),

 [gen_server:cast({person, RecipientServer},
 {message, {SenderName, SenderServer}, Text}) ||
 {{RecipientName, RecipientServer}, _} <- State,
 RecipientName /= SenderName];

 false -> ok
 end,
 {reply, ok, State};

%% Get the state of another person and return it to the asker

handle_call({who, _Person, ServerRef}, _From, State) ->
 Reply = gen_server:call({person, ServerRef}, get_profile),
 {reply, Reply, State};

%% Return a list of all users currently in the chat room

handle_call(users, _From, State) ->
 UserList = [{UserName, UserServer} ||
 {{UserName, UserServer}, _} <- State],
 {reply, UserList, State};

handle_call(Request, _From, State) ->
 {ok, {error, "Unhandled Request", Request}, State}.

handle_cast(_Request, State) ->
 {noreply, State}.

handle_info(Info, State) ->
 io:format("Received unknown message ~p~n", [Info]),
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

106 | Appendix A: Solutions to Études

%%% Internal functions

person.erl
-module(person).
-behaviour(gen_server).
-export([start_link/1]). % convenience call for startup
-export([init/1,
 handle_call/3,
 handle_cast/2,
 handle_info/2,
 terminate/2,
 code_change/3]). % gen_server callbacks

-record(state, {chat_node, profile}).

% internal functions
-export([login/1, logout/0, say/1, users/0, who/2, profile/2]).

-define(CLIENT, ?MODULE). % macro that defines this module as the client

%%% convenience method for startup
start_link(ChatNode) ->
 gen_server:start_link({local, ?CLIENT}, ?MODULE, ChatNode, []).

init(ChatNode)->
 io:format("Chat node is: ~p~n", [ChatNode]),
 {ok, #state{chat_node=ChatNode, profile=[]}}.

%% The server is asked to either:
%% a) return the chat host name from the state,
%% b) return the user profile
%% c) update the user profile

handle_call(get_chat_node, _From, State) ->
 {reply, State#state.chat_node, State};

handle_call(get_profile, _From, State) ->
 {reply, State#state.profile, State};

handle_call({profile, Key, Value}, _From, State) ->
 case lists:keymember(Key, 1, State#state.profile) of
 true -> NewProfile = lists:keyreplace(Key, 1, State#state.profile,
 {Key, Value});
 false -> NewProfile = [{Key, Value} | State#state.profile]
 end,
 {reply, NewProfile,
 #state{chat_node = State#state.chat_node, profile=NewProfile}};

handle_call(_, _From, State) -> {ok, [], State}.

Solution 11-4 | 107

handle_cast({message, {FromUser, FromServer}, Text}, State) ->
 io:format("~s (~p) says: ~p~n", [FromUser, FromServer, Text]),
 {noreply, State};

handle_cast(_Request, State) ->
 io:format("Unknown request ~p~n", _Request),
 {noReply, State}.

handle_info(Info, State) ->
 io:format("Received unexpected message: ~p~n", [Info]),
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

% internal functions

%% @doc Gets the name of the chat host. This is a really
%% ugly hack; it works by sending itself a call to retrieve
%% the chat node name from the server state.

get_chat_node() ->
 gen_server:call(person, get_chat_node).

%% @doc Login to a server using a name
%% If you connect, tell the server your user name and node.
%% You don't need a reply from the server for this.

-spec(login(string()) -> term()).

login(UserName) ->
 ChatNode = get_chat_node(),
 if
 is_atom(UserName) ->
 gen_server:call({chatroom, ChatNode},
 {login, atom_to_list(UserName), node()});
 is_list(UserName) ->
 gen_server:call({chatroom, ChatNode},
 {login, UserName, node()});
 true ->
 {error, "User name must be an atom or a list"}
 end.

%% @doc Log out of the system. The person server will send a From that tells
%% who is logging out; the chatroom server doesn't need to reply.

-spec(logout() -> atom()).

108 | Appendix A: Solutions to Études

logout() ->
 ChatNode = get_chat_node(),
 gen_server:call({chatroom, ChatNode}, {logout}),
 ok.

%% @doc Send the given Text to the chat room server. No reply needed.

-spec(say(string()) -> atom()).

say(Text) ->
 ChatNode = get_chat_node(),
 gen_server:call({chatroom, ChatNode}, {say, Text}),
 ok.

%% @doc Ask chat room server for a list of users.

-spec(users() -> [string()]).

users() ->
 gen_server:call({chatroom, get_chat_node()}, users).

%% @doc Ask chat room server for a profile of a given person.

-spec(who(string(), atom()) -> [tuple()]).

who(Person, ServerRef) ->
 gen_server:call({chatroom, get_chat_node()}, {who, Person, ServerRef}).

%% @doc Update profile with a key/value pair.

-spec(profile(atom(), term()) -> term()).

profile(Key, Value) ->
 % ask *this* server for the current state
 NewProfile = gen_server:call(person, {profile, Key, Value}),
 {ok, NewProfile}.

Solution 11-4 | 109

	Cover
	Copyright
	Table of Contents
	Études for Erlang
	Contributor Guidelines
	How to Contribute
	Create a GitHub account
	Copy (“fork”) the project repository to your account
	Edit your file using AsciiDoc
	Double check your submission and add your biography
	Submit a pull request
	Engage in back-and-forth

	Preface: What’s an étude?
	What are Études for Erlang?
	How This Book was Written
	Working with Other Books
	Acknowledgments

	Chapter 1. Getting Comfortable with Erlang
	Étude 1-1: Experimenting with Errors

	Chapter 2. Functions and Modules
	Étude 2-1: Writing a Function
	Étude 2-2: Documenting a Module
	Étude 2-3: Documenting a Function

	Chapter 3. Atoms, Tuples, and Pattern Matching
	Étude 3-1: Pattern Matching
	Étude 3-2: Guards
	Étude 3-3: Underscores
	Étude 3-4: Tuples as Parameters

	Chapter 4. Logic and Recursion
	Étude 4-1: Using case
	Étude 4-2: Recursion
	Étude 4-3: Non-Tail Recursive Functions
	Étude 4-4: Tail Recursion with an Accumulator
	Étude 4-5: Recursion with a Helper Function

	Chapter 5. Strings
	Étude 5-1: Validating Input
	Étude 5-2: Using the re Module

	Chapter 6. Lists
	Étude 6-1: Recursive Iteration through a List
	Étude 6-2: Iteration through Lists (More Practice)
	Étude 6-3: Accumulating the Sum of a List
	Interlude: “Mistakes were made.”
	Étude 6-4: Lists of Lists
	Étude 6-5: Random Numbers; Generating Lists of Lists

	Chapter 7. Higher Order Functions and List Comprehensions
	Étude 7-1: Simple Higher Order Functions
	Étude 7-2: List Comprehensions and Pattern Matching
	Part One
	Part Two

	Étude 7-3: Using lists:foldl/3
	Étude 7-4: Using lists:split/2
	Étude 7-5: Multiple Generators in List Comprehensions
	Étude 7-6: Explaining an Algorithm

	Chapter 8. Processes
	Étude 8-1: Using Processes to Simulate a Card Game
	The Art of War
	War: What is it good for?
	Pay Now or Pay Later
	The Design
	Messages Are Asynchronous
	Hints for Testing

	Chapter 9. Handling Errors
	Étude 9-1: try and catch
	Étude 9-2: Logging Errors

	Chapter 10. Storing Structured Data
	Étude 10-1: Using ETS
	Part One
	Part Two
	Part Three

	Étude 10-2: Using Mnesia
	Part One
	Part Two
	Part Three

	Chapter 11. Getting Started with OTP
	Étude 11-1: Get the Weather
	Obtaining Weather Data
	Parsing the Data
	Set up a Supervisor

	Étude 11-2: Wrapper Functions
	Étude 11-3: Independent Server and Client
	Étude 11-4: Chat Room
	The chatroom Module
	The person Module
	Wrapper Functions for the person module
	Putting it All Together

	Appendix A. Solutions to Études
	Solution 2-1
	geom.erl

	Solution 2-2
	geom.erl

	Solution 2-3
	geom.erl

	Solution 3-1
	geom.erl

	Solution 3-2
	geom.erl

	Solution 3-3
	geom.erl

	Solution 3-4
	geom.erl

	Solution 4-1
	geom.erl

	Solution 4-2
	dijkstra.erl

	Solution 4-3
	powers.erl
	powers_traced.erl

	Solution 4-4
	powers.erl
	powers_traced.erl

	Solution 4-5
	powers.erl

	Solution 5-1
	geom.erl
	ask_area.erl

	Solution 5-2
	dates.erl

	Solution 6-1
	stats.erl

	Solution 6-2
	stats.erl

	Solution 6-3
	dates.erl

	Solution 6-4
	teeth.erl
	stats.erl

	Solution 6-5
	non_fp.erl

	Solution 7-1
	calculus.erl

	Solution 7-2
	patmatch.erl

	Solution 7-3
	stats.erl

	Solution 7-4
	dates.erl

	Solution 7-5
	cards.erl

	Solution 7-6
	cards.erl

	Solution 8-1
	cards.erl
	game.erl

	Solution 9-1
	stats.erl

	Solution 9-2
	bank.erl

	Solution 10-1
	phone_records.hrl
	phone_ets.erl
	generate_calls.erl

	Solution 10-2
	phone_records.hrl
	phone_mnesia.erl
	pet_records.hrl
	pet_mnesia.erl

	Solution 11-1
	weather.erl
	weather_sup.erl

	Solution 11-2
	weather.erl

	Solution 11-3
	Solution 11-4
	chatroom.erl
	person.erl

